摘要
对于具有信贷需求的农户而言,面临的信贷配给程度由高到低可依次划分为遭受需求型配给和遭受供给型配给以及未遭受信贷配给。现有对农户配给程度的决定因素进行识别研究,往往忽略信贷需求的样本选择性问题。采用2013年苏鲁两省农户调查数据,运用有序Probit模型,识别农户遭受不同程度信贷配给的决定因素,有效解决了样本选择性估计偏误。研究发现:户主受教育程度、银行网点距离等因素对农户信贷配给程度具有显著影响。其中,户主受教育程度等变量影响负向,导致遭受供给型配给和需求型配给的概率降低;而银行网点距离等变量影响正向,则会导致遭受供给型配给和需求型配给的概率增加。
For the rural households who need credit,the degree of credit rationing can be sorted descending order by demand-side rationing,supply-side rationing and not suffer from credit rationing.Although some researchers have been identify the determinants of the degree with credit rationing from rural households,seldom solve the selectivity estimation bias caused by the sample selection problem somewhat ignored by previous research.Using recently survey data of rural households from Jiangsu and Shandong Province,this paper develops an ordered Probit model with sample selection to identify the determinants of the degree with credit rationing,also deal with the sample selection bias issue caused by credit demand.Results show that the education level of household header,the net income last year,the productive fixed assets last year,get the formal loan previously,the distance from bank etc.,have significant impact on the degree of credit rationings.
出处
《统计与信息论坛》
CSSCI
北大核心
2016年第6期106-111,共6页
Journal of Statistics and Information
基金
教育部人文社会科学研究青年项目<农户信贷违约及履约激励机制研究:以苏鲁地区为例>(14YJC790067)
国家自然科学基金青年项目<新型城镇化中失地农民融资困境的形成
现状及治理研究>(71503118)
国家自然科学基金重点项目<农村金融体系建设管理研究>(71133001)