期刊文献+

第三类边界条件下长圆柱对流融化过程的分阶段求解 被引量:2

Periodic Solution for the Melting Convection Process of Length Cylinder under the Third Boundary Condition
下载PDF
导出
摘要 为了研究圆柱融化各个传热阶段的特性,以第三类边界条件下一维长圆柱对流融化过程为研究对象,同时考虑融化后的相变材料被周围流体及时带走,按照圆柱内部温度分布特性把传热过程分成3个阶段,并采用三次多项式热平衡积分方法对各阶段进行近似求解,以长冰柱对流融化过程为计算对象,分析了各控制参数对于相界面移动规律的影响。通过分析得到结论如下:当Bi≦3(T_m-T_0)/(θ_0-T_m)时长圆柱传热过程分为两个阶段,当Bi>3(T_m-T_0)/(θ_0-T_m)时分为三个阶段;不同控制参数条件下,相界面均随时间约呈线性变化规律;随着对流换热系数、冰柱初始温度及水流温度的增大,相界面随时间变化率越大。不同冰柱直径条件下,相界面随时间变化率基本相同。 In order to study the characteristics of each melting heat conduction process of the length cylinder,this paper concerned the one-dimensional convective melting process of a length cylinder under the third boundary condition and considered the phase change material that would be took away by the surrounding fluid in time after melting.The heat transfer process was divided into three stages according to the temperature distribution inside the cylinder.A cubic heat balance integral method was used in solving the approximate solution of each stage.Taking the convective melting process of the length cylinder as the calculating object to analyze the change impacted by each governs parameter of the moving regulation of phase change interface,some conclusions could be got as follow:The heat transfer process of the length cylinder could be divided into 2 phases in the condition of Bi ≦3(Tm-T0)/(θ0-Tm),on the contrary Bi〉3(Tm-T0)/(θ0-Tm),it could be divided into 3 phases.In the condition of different control parameters,the phase change interface varied in a linear manner with time.With the increase of the initial temperature of the icicle,the temperature of water fluid and convective heat transfer parameter,the variation rate of phase change interface with time also increased.In the condition of different icicle's diameter,the variation rate of phase change interface almost maintained the same value with time.
出处 《山东农业大学学报(自然科学版)》 CSCD 2016年第3期441-446,共6页 Journal of Shandong Agricultural University:Natural Science Edition
基金 辽宁省大学生创新创业计划项目(201610147000006)
关键词 融化过程 长圆柱 第三类边界条件 Melting process length cylinder the third boundary condition
  • 相关文献

参考文献12

  • 1Myers TG, Mitchell SL, Muchatibaya G. Unsteady contact melting of a rectangular cross-section material on a flat plate [J]. Physics of Fluids, 2008,20(10):1-12.
  • 2杨莺,梁艳南,周孑民,吴烨.壳管式相变蓄热器传热效率研究[J].热科学与技术,2011,10(3):226-230. 被引量:11
  • 3汪玺,袁艳平,邓志辉,杨晓娇,曹晓玲.相变蓄热水箱的设计与运行特性研究[J].太阳能学报,2014,35(4):670-676. 被引量:14
  • 4莫冬传,吕树申,何振辉.相变蓄冷换热器的优化设计[J].工程热物理学报,2015,36(1):175-178. 被引量:6
  • 5Ei-genk MS, Cronenberg AW. Solidification in a semi-infinite region with boundary conditions of the second kind: An exact solution [J]. Letters in Heat and Mass Transfer, 1979(6):321-327.
  • 6Gupta SC. The Classical Stefan Problem: basic concepts, modelling and analysis [M].,North-holland:JAl Press,2003:78.
  • 7Cheng kc, Inaba H, Gilpin RR. Effects of natural convection on ice formation around an isothermally cooled horizontal cylinder[J]. Journal of Heat transfer, 1988,110(4):931-937.
  • 8Pedroso RI, Domoto GA. Exact solution by perturbation method for planar solidification of a saturated liquid with convection at the wall[J]. International Journal of Heat and Mass Transfer, 1973,16(9): 1816-1819.
  • 9陈则韶.求解凝固相变热传导问题的简便方法—热阻法[J].中国科学技术大学学报,1991,21(3):69-76. 被引量:15
  • 10Savino JM, Siegel R. An analysis of the transient solidification of a flowing liquid on a convectively cooled wall[C]//Proceedings of the Third International Heat Transfer Conference. USA:NewYork, 1962:123-127.

二级参考文献24

  • 1张仁元.相变材料与相交储能技术[M].北京:科学出版社,2009;16-17.
  • 2PADMANABHAN P V, KRISHNA MURTHY M V. Outward phase change in a cylindrical annulus with axial fins on the inner tube [J]. Int J Heat Mass Transfer, 1986, 29(12) :1855-1866.
  • 3SPARROW E M, LARSEN E D, RAMSEY J W. Freezing on a finned tube for either conduction- controlled or natural-convection-controlled heat transfer [J]. Int J Heat Mass Transfer, 1981, 24 (2) :273-284.
  • 4孙旋.中常温相变蓄热的理论与实验研究[D].北京:北京工业大学,2003:3-5.
  • 5KHAN M A, ROHATGI P K. Numerical solution to a moving boundary problem in composite medium [J]. Nurner Heat Transfer, 1994, 25: 205: 209- 221.
  • 6HARRIS K T. Phase-change phenomena in porous media-a non-local thermal equilibrium model [J]. Heat and Mass Transfer, 2001, 44 : 1619-1625.
  • 7AGYENIM F, HEWITT N, EAMES P. A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage [J]. Renew and Sustain Energy Rev, 2010, 14(1) :615-628.
  • 8VELRAJ R, SEENIRAJ R V, HAFNER B, et al. Experimental analysis and numerical modeling of inward solidification on a finned vertical tube for a latent heat storage unit [J]. Solar Energy, 1997, 60(5) :281-290.
  • 9METTAWEE E S, ASSASSA G M R. Thermal conductivity enhancement in a latent heat storage system [J]. Solar Energy, 2007, 81:839-45.
  • 10AGYENIM F, EAMES P, SMYTH M. Heat transfer enhancement in medium temperature thermal energy storage system using a multituhe heat transfer array [J]. Renew Energy, 2010, 35(1):198-207.

共引文献42

同被引文献27

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部