期刊文献+

两类冲击杆端部的二维数值分析及实验研究 被引量:1

Two-dimensional numerical analysis and experimental study of two types of impact bars
下载PDF
导出
摘要 冲击类机械的工作载荷通常由两实心圆柱形杆件撞击产生,而对于冲击杆件的设计目前主要采用忽略径向效应的一维弹性杆波动力学方法。为了研究径向效应的影响,采用二维Lax-Wendroff有限差分算法分别对实心圆杆和空心圆杆撞击端附近区域的轴向应力进行了数值计算。结果表明,撞击过程中距离实心圆杆撞击端约1倍直径的区域内存在应力集中现象,而对于空心圆杆撞击端邻近区域应力分布则比较均匀。最后通过实验测量了撞击过程中冲击杆内部关键点的应力值,并与数值计算结果进行了对比,二者具有较好的一致性。 Impact machines often generate impact loads by two solid cylindrical rods that are known as impact bars. The current design of striker bars mainly adopts one-dimensional elementary theory that ignores the radial-inertia effects. To research the radial-inertia effects, the two-dimensional Lax-Wendroff finite difference method was applied to calculate axial stress adjacent to the impact ends of a solid round bar and a hollow round bar, respectively. The numerical simulation shows that the stress concentration occurs in the radial area at one diameter away from the impact end of a solid round bar, whereas stress uniformly distributes over a longitudinal section near the end of a hollow round bar. Finally, internal strain experimental data of key points was acquired through strain gages placed on the center lines of the semi-circle rod and the semi-circle tube used in experiments. Numerical results showed good agreement with the experimental data.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2016年第5期707-712,共6页 Journal of Harbin Engineering University
基金 国家自然科学基金资助项目(51279042)
关键词 冲击杆 径向惯性效应 实心杆 空心杆 有限差分法 应变测量 数值分析 impact bar radial-inertia effects solid round bar hollow round bar finite difference method strain measurement numerical analysis
  • 引文网络
  • 相关文献

参考文献15

  • 1WANG Lili. Foundation of stress waves [ M]. 2nd ed. Bei- jing: National Defence Industry Press, 2005: 7-9.
  • 2DAVIES R M. Stress waves in solids [ J]. British journal of applied physics, 1956, 7(6) : 203-209.
  • 3BAKER W E, DOVE R C. Measurement of internal strains in a bar subjected to longitudinal impact [ J ]. Experimental mechanics, 1962, 2(10) : 307-311.
  • 4BERTHOLF L D, KARNES C H. Axisymmetric elastic-plas- tic wave propagation in 6061-T6 Aluminum bars of finite length[ J ]. Journal of applied mechanics, 1969, 36 ( 3 ) : 533-541.
  • 5HABBERSTAD J L, HOGE K G, FOSTER J E. An experi- mental and numerical study of elastic strain waves on the center line of a 6061-T6 Aluminum bar[ J]. Journal of ap- plied mechanics, 1972, 39(2) : 367-371.
  • 6HE L, MA G W, KARP B, et al. Investigation of dynamic saint-venant' s principle in a cylindrical waveguide-experi- mental and numerical results [ J ]. Experimental mechanics, 2015, 55(3): 623-634.
  • 7LIN Xiao, BALLMANN J. A numerical scheme for axisym- metric elastic waves in solids [ J]. Wave motion, 1995, 21 (2) : 115-126.
  • 8黄吕权,夏琴香,唐耀辉.锤杆的疲劳强度研究[J].机械强度,1992,14(1):33-39. 被引量:4
  • 9李夕兵,古德生,赖海辉.冲击载荷下岩石动态应力-应变全图测试中的合理加载波形[J].爆炸与冲击,1993,13(2):125-130. 被引量:37
  • 10李夕兵 刘得顺 古得生.消除岩石动态实验曲线振荡的有效途径.中南工业大学学报,1995,(26):457-460.

二级参考文献18

  • 1王礼立,王永刚.应力波在用SHPB研究材料动态本构特性中的重要作用[J].爆炸与冲击,2005,25(1):17-25. 被引量:59
  • 2李夕兵,中南矿冶学院学报,1988年,19卷,5期,492页
  • 3唐志平,爆炸与冲击,1986年,6卷,4期,320页
  • 4王福堂,力学译丛,1964年,3期,73页
  • 5王仁,固体中的应力波,1958年
  • 6Meyers M A. Dynamic behavior of materials [ M ]. New York: John Wiley & Sons Inc, 1994:25 -26, 305 -310.
  • 7Davis R M. A critical study of the Hopkinson pressure bar [ J]. Philosophical Transactions, 1948, A240 : 375 -457.
  • 8Graff K F. Wave motion in elastic solids[ M]. New York: Dover Publication, 1973 : 116 - 151.
  • 9Gray III G T. Classic split-Hopkinson pressure bar testing[ C ]// Mechanical testing and evaluation. Ohio: ASM International, 2000 : 1027 - 1068.
  • 10Follansbee P S, Frantz C. Wave propagation in the split Hopkin- son pressure bar[ J]. Transactions of the ASME, Journal of Engi- neering Materials and Technology, 1983, 105:61 -66.

共引文献43

同被引文献10

引证文献1

;
使用帮助 返回顶部