期刊文献+

基于置信规则推理方法的雷达目标跟踪 被引量:1

Radar target tracking via belief rule-based methodology
下载PDF
导出
摘要 针对雷达目标跟踪中数据相关联的问题,提出一种基于雷达目标航向和速度对雷达数据进行数据关联的方法,解决目标密度较大时所出现的目标误跟或丢失问题,并采用基于置信规则库(belief rule-based,BRB)的方法建立了目标速度与航向的置信规则库,通过证据推理(evidential reasoning,ER)算法解决了不同量纲数据之间的冲突问题,从而验证了此方法的可靠性。实验结果表明,其真实目标置信度可达到95%以上。最后,运用此方法将得到的真实目标点进行Kalman滤波,实现对雷达目标的跟踪,通过Monte Carlo仿真验证了此方法具有很好的目标跟踪效果。 To address the data association problems in radar target tracking, a method of associating radar data ac?cording to radar target course and speed is proposed. It aims to troubleshoot erroneous targeting or target loss in the e?vent of a large density of targets. The method adopts the belief rule?based ( BRB) method to establish the rule base of the navigation velocity and course of radar targets. Through evidential reasoning it can mitigate the conflict between different dimensional data and thus proves reliable. The experimental results show that it can reach a real objective confidence of more than 95%. Finally, the real target points obtained by this method are filtered using a Kalman filter to track the radar targets. Monte Carlo simulation verifies that this method shows excellent radar target tracking.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2016年第6期826-831,共6页 Journal of Harbin Engineering University
基金 国家自然科学基金面上项目(51179146)
关键词 雷达目标跟踪 置信规则库 证据推理 航向 航速 radar target tracking belief rule-based evidential reasoning azimuth angle radial velocity
  • 相关文献

参考文献11

  • 1BAR-SHAL0M Y , LI X R , KIRUBARAJAN T. Estimationwith applications to tracking and navigation: theory, algorithmsand software [M]. New York: John Wiley & Sons,2001.
  • 2MACAVEIU A , CAMPEANU A. Automotive radar targettracking by Kalman filtering[C]//Proceedings of the 201311th International Conference on Telecommunication inModern Satellite, Cable and Broadcasting Services. Nis,Serbia: IEEE,2013, 2: 553-556.
  • 3陈志敏,薄煜明,吴盘龙,刘正凡.拟蒙特卡罗粒子滤波改进算法及其在雷达目标跟踪中的应用[J].应用科学学报,2012,30(6):607-612. 被引量:4
  • 4KUHN H W. The Hungarian method for the assignment problem[J]. Naval research logistics,2005,52(1) : 7-21.
  • 5SIMON D. Kalman filtering with state constraints: a survey oflinear and nonlinear algorithms [J] . IET control theory andapplication,2010,4 (8 ): 1303-1318.
  • 6李秀良.基于聚类分析的雷达航迹跟踪数据关联算法[J].指挥信息系统与技术,2010,1(3):62-65. 被引量:2
  • 7ABBAS M A , Shoukry A A. CMUNE: a clustering using mutualnearest neighbors algorithm [C]//Proceedings of the2012 11th international conference on information science,signal processing and their applications (ISSPA). Montreal,QC: IEEE,2012: 1192-1197.
  • 8叶晓雪,王新民,李俨,李文超.修正概率关联算法在航迹关联中的应用[J].计算机仿真,2011,28(3):19-21. 被引量:1
  • 9李彬,王红卫,杨剑波,郭敏.基于置信规则推理的库存控制方法[J].华中科技大学学报(自然科学版),2011,39(7):76-79. 被引量:3
  • 10YANG Jianbo, LIU Jun, WANG Jin, et al. Belief rule-baseinference methodology using the evidential reasoning approach-RIMER [J]. IEEE transactions on systems, man,and cybernetics-part a: systems and humans, 2006, 36(2) : 266-285.

二级参考文献28

  • 1傅玉颖,潘晓弘.不确定情况下基于模糊集理论的库存管理研究[J].系统工程理论与实践,2005,25(9):54-58. 被引量:22
  • 2杨杰,华中生.一种基于动态批量的非平稳需求库存管理方法[J].计算机集成制造系统,2007,13(2):387-391. 被引量:12
  • 3叶龙,王京玲,张勤.遗传重采样粒子滤波器[J].自动化学报,2007,33(8):885-887. 被引量:43
  • 4R ASinger, R G Sea. A New Filter for Optimal Tracking in Dense Multitarget Environment[ C]. UrbanaChampaign, USA: Univ. of Illinois, 1971. 201-211.
  • 5H Zhou, Z L Jing, P Wang. Maneuvering Target Tracking[ M]. Beijing: Guo Fang Industry Press, 1991.
  • 6R A Singer, J J Stein. An Optimal Tracking Filter for Processing Sensor Data of Imprecisely Determined Origin Insurveilance System [ C]. Proceedings of the Tenth IEEE Conference on Decision and Control, 1998.
  • 7S Y Bar, E Tse. Tracking in a Cluttered Environment with Probabilistic Data Association [ J ]. Automatica, 1975,11 (9) :451 - 175.
  • 8Y Bar-Shalom, T E Fortman. Tracking and data associate[ M]. Orlando, Academic Press, 1988. 127-138.
  • 9Gen M, Tsujimura Y, Zheng D Z. An application of fuzzy set theory to inventory control models [J]. Computers and Industrial Engineering, 1997, 33 (3-4): 553-556.
  • 10Axsater S. Inventory Control[M]. 2 Edition, Bei-jing: Tsinghua University Press, 2007.

共引文献6

同被引文献12

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部