期刊文献+

一种图像辅助火星着陆段自主导航方法 被引量:9

An Image-Based Autonomous Navigation Method for Precise Landing on Mars
下载PDF
导出
摘要 针对未来深空探测软着陆高精度实时导航的需求,提出了一种图像辅助的自主导航方案。首先通过下降段图像与落点区域地形匹配,获得着陆器相对于落点的位置和姿态;然后基于误差Kalman模型估计着陆器的状态误差,修正惯性导航的结果;在图像信息不可用的情况下,只进行惯性递推导航;这种方案既提高了导航的精度,也能保证实时性的要求。数值仿真验证了该方案的可行性,该方案对未来实际工程任务具有很大的参考价值。 Future deep space exploration missions will require accurate navigation information for soft landing. This paper presents an innovative image-based navigation scheme for pinpoint landing. Firstly, the navigation extracts correspondences between the descent images and the Digital Elevation Maps of touchdown area,and then the relative positions and attitudes of the lander can be calculated. An extended Kalman filter of error model loosely integrates image information and INS. The filter computes the accurate estimation of the state error to correct the cumulative biases of INS.The filter only updates the INS equations when the image information is unavailable. This navigation system can improve the accuracy and meet the real-time requirements. Numerical simulations have demonstrated that the designed scheme is reasonable. It can be applied to future pinpoint landing missions for space exploration.
出处 《宇航学报》 EI CAS CSCD 北大核心 2016年第6期687-694,共8页 Journal of Astronautics
基金 国家杰出青年科学基金项目资助(61525301)
关键词 自主导航 高精度软着陆 图像单应性 火星 Autonomous navigation Precise soft landing Image-homography Mars
  • 相关文献

参考文献22

  • 1王大轶,李骥,黄翔宇,张洪华.月球软着陆过程高精度自主导航避障方法[J].深空探测学报,2014,1(1):44-51. 被引量:18
  • 2Piergiorgio L, Nicoletta N, Con'ado M, et al. A vision-based navigation facility for planetary entry descent landing [ C ]. The 12th European Conference on Computer Vision. Florence, Italy, October 7 - 13, 2012.
  • 3Luca Z, Francesca O, Alessandro V, et al. Relative pose estimation for planetary entry descent landing [ C ]. The 10th Asian Conference on Computer Vision, Queenstown, New Zealand, November 8 -9, 2010.
  • 4Wells G W, Laneur J M, Vrges A, et al. Entry descent and landing challenges of human Mars exploration [ C ]. The 29th Annual AAS Guidance and Control Conference, Breckenridge, Colorado, February 4 - 8, 2006.
  • 5Timothy B, Linda F, Geller, D, et al. GN&C technology needed to achieve pinpoint landing accuracy at Mars [C ]. The AIAA/ AAS Astrodynamics Specialist Conference and Exhibit, Providence, Rhode Island, August 16 - 19, 2004.
  • 6Klumpp A R. Pinpoint landing concepts for the Mars rovers sample return mission [ C ]. The 22th Annual Rocky Mountain Guidance and Control Conference, San Diego, CA, USA, February 4 - 8, 1989.
  • 7崔平远,于正湜,朱圣英.火星进入段自主导航技术研究现状与展望[J].宇航学报,2013,34(4):447-456. 被引量:32
  • 8Frapard B, Mancuso S. Vision and the NPAL project [ C ] navigation for European landers The 6th Intemational ESA Conference on Guidance, Navigation and Control Systems, Loutraki, Greece, October 17 -20, 2005.
  • 9Cheng Y, Johnson J, Matthies L. A planetary landing applications of computer vision [ C ]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, June 20 -25, 2005.
  • 10Cheng Y, Gognen J, Johnson A, et al. The Mars exploration rovers descent image estimation system [ J ]. IEEE Intelligent Systems, 2004, 19(3) :13 -21.

二级参考文献55

  • 1Johnson A E, Matthies L H. Precise image based motion estimalion for autonomous small body exploration [ C ]//Proceedings of the Fifth International Symposium on Artificial Intelligence, Robotics and Automation in Space, Noordwijk, Netherlands, European Space Agency, 1999: 627 - 634.
  • 2Misu T, Hashimoto T, Ninomiya K. Optical guidance for autonomous landing of spacecraft [J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(2) :459 - 472.
  • 3Benedetti A, Perona P. Real-time 2 - D feature detection on a reconfigurable computer [ C ]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, IEEE Computer Society, 1998: 586-593.
  • 4Shi J, Tomasi C. Good feature to track[ C]//IEEE International Conference on Computer Vision and Pattern Recognition, Berlin, IEEE Computer Society Press, 1993 : 593 - 600.
  • 5Broida J, Chandrashekhar S, Chellappa R. Recursive 3-D motion estimation from a monocular image sequence [ J ]. IEEE Transactions on Aerospace and Electronic Systems, 1990, 26(4) :639 - 656.
  • 6Braun R D, Manning R M. Mars exploration entry, descent, and landing challenges[J]. Journal of Spacecraft and Roekets, 2007, 44 (2) : 310 -323.
  • 7Ivanov M C, Winski R G, Grover M R, et at. Mars science laboratory entry guidance improvements study for the Mars 20t8 mission [ C ]. IEEE Aerospace Conference, Big Sky, Montana, March 3 - 10, 2012.
  • 8Grotzinger J P, Crisp J, Vasavada A R, et al. Mars science laboratory mission and science itwestigation [J]. Space Science Reviews, 2012, 170: 1 -52.
  • 9Levesque J F. Advanced navigation and guidance for high- precision planetary landing on Mars[ D ]. Canada: U niversite de Sherbrooke, 2006.
  • 10Baglinni P. The Mars exploration plans of ESA[ J ]. Robotics & Automation Magazine, 2006, 13 (2) : 83 - 89.

共引文献51

同被引文献154

引证文献9

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部