期刊文献+

C_h空间中无穷时滞随机泛函微分方程解的存在唯一性

Existence and uniqueness of solution to stochastic functional differential equations with infinite delay at phase space C_h
下载PDF
导出
摘要 研究了一类具有无穷时滞的随机泛函微分方程,以空间(C_h,|·|_h)为相空间,利用Picard迭代法,借助于Bihari不等式,得到了系数在满足非Lipschitz条件和弱化的线性增长条件时解的存在唯一性. This paper deals with the existence and uniqueness of the solution to stochastic functional differential equations with infinite delay.In the phase space C_h,under the non-Lipschitz condition and a weakened linear growth condition for the coefficients and by means of the Picard approximations and Bihari inequality,the existence-uniqueness theorem is obtained.
出处 《应用数学与计算数学学报》 2016年第2期260-271,共12页 Communication on Applied Mathematics and Computation
基金 东华大学创新基金资助项目(15D310414)
关键词 随机泛函微分方程 无穷时滞 C_h空间 存在性 唯一性 stochastic functional differential equations infinite delay phase space C_h existence uniqueness
  • 相关文献

参考文献16

  • 1Arnold L. Stochastic Differential Equations: Theory and Applications [M]. New York: Wiley, 1974.
  • 2Friedman A. Stochastic Differential Equations and Applications [M]. New York: Academic Press, 1975.
  • 3Hasminskii R Z. Stochastic Stability of Differential Equations [M]. Leiden: Sijthoff and Noord- hoff, 1980.
  • 4φksendM B. Stochastic Differential Equations: An Introduction with Applications [M]. Berlin: Springer-Verlag, 1995.
  • 5Mao X R. Stochastic Differential Equations and Applications [M]. 2nd ed. Chichester: Horwood Publishing Limited, 2007.
  • 6郭谦,解雯雯,陶雪银,朱颖.线性随机时滞微分方程裂步Milstein方法的收敛性(英文)[J].应用数学与计算数学学报,2012,26(4):456-464. 被引量:1
  • 7沈祖梅,胡良剑.随机时滞微分方程数值解的渐近均方有界性[J].应用数学与计算数学学报,2016,30(1):60-70. 被引量:4
  • 8黄启昌.具有无限时滞的泛函微分方程的周期解的存在性[J].中国科学,1984,14A(10):881-889.
  • 9王克,黄启昌.Ck空间与无限时滞的泛函微分方程解的有界性及周期性[J].中国科学,198717A(3):242-252.
  • 10Wei F Y, Wang K. The existence and uniqueness of the solution for stochastic functional differential equations with infinite delay [J]. J Math Anal Appl, 2007, 331: 516-531.

二级参考文献12

  • 1秦衍,夏宁茂,高焕超.非线性随机微分方程终值问题的适应解和连续依赖性[J].应用概率统计,2007,23(3):273-284. 被引量:5
  • 2Hu Y Z, Mohammed S E, Yan F. Discrete-time approximations of stochastic delay equations: the Milstein scheme [J]. Ann. Probab., 2004, 32: 265-314.
  • 3Kloeden P E, Shardlow T. The Milstein scheme for stochastic delay differential equations without using anticipative calculus [J]. Stoch. Anal. Appl., 2012, 30: 182-202.
  • 4Higham D J. Mean-square and asymptotic stability of the stochastic theta method [J]. SIAM J Numer Anal, 2000, 38(3): 753-769.
  • 5Higham D J, Mao X, Yuan C. Almost sure and moment exponential stability in the numerical simulation of stochastic differential equations [J]. SIAM J Numer Anal, 2007, 45(2): 592-609.
  • 6Mao X. Exponential stability of equidistant Euler-Maruyama approximations of stochastic differential delay equations [J]. J Comput Appl Math, 2007, 200: 297-316.
  • 7Chen L, Wu F. Almost sure exponential stability of drift-implicit 0-methods for stochastic differential equations [J]. Stat Probab Lett, 2012, 82(9): 1669-1676.
  • 8Wu F, Mao X, Szpruch L. Almost sure exponential stability of numerical solutions for stochastic delay differential equations [J]. Numer Math, 2010, 115(4): 681-697.
  • 9Liu W, Mao X. Asymptotic moment boundedness of the numerical solutions of stochastic differential equations [J]. J Comput Appl Math, 2013, 251: 22-32.
  • 10Qiu Q W, Liu W, Hu L J. Asymptotic moment boundedness of the stochastic theta method and its application for stochastic differential equations [J]. Advances in Difference Equations, 2014, 2014(1): 1-14.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部