摘要
研究了一类具有无穷时滞的随机泛函微分方程,以空间(C_h,|·|_h)为相空间,利用Picard迭代法,借助于Bihari不等式,得到了系数在满足非Lipschitz条件和弱化的线性增长条件时解的存在唯一性.
This paper deals with the existence and uniqueness of the solution to stochastic functional differential equations with infinite delay.In the phase space C_h,under the non-Lipschitz condition and a weakened linear growth condition for the coefficients and by means of the Picard approximations and Bihari inequality,the existence-uniqueness theorem is obtained.
出处
《应用数学与计算数学学报》
2016年第2期260-271,共12页
Communication on Applied Mathematics and Computation
基金
东华大学创新基金资助项目(15D310414)
关键词
随机泛函微分方程
无穷时滞
C_h空间
存在性
唯一性
stochastic functional differential equations
infinite delay
phase space C_h
existence
uniqueness