期刊文献+

飑线组织化过程对环境垂直风切变和水汽的响应 被引量:35

Impact of Vertical Wind Shear and Moisture on the Organization of Squall Lines
下载PDF
导出
摘要 利用ARPS模式对飑线发生发展过程进行二维理想数值试验,讨论了低层环境垂直风切变和水汽条件变化时,飑线内部物理因子配置变化及其与系统强度演变的联系。研究表明,飑线发展过程中出现的动量、热量和水汽的再分配过程,造成系统内垂直环流结构和扰动温湿场分布发生变化,从而影响系统内部深对流的组织化过程和飑线强度的发展。基于低层环境垂直风切变和水汽两个要素的敏感性试验研究表明,低层环境垂直风切变增大(减小)时,飑线移速减慢(加快),冷池前沿激发的新对流与中高层的垂直运动相互贯通(分离),飑线系统强度随之增强(减弱)。此外,当低层水汽增加(减少)时,会导致输送到中层的水汽增加(减少),中层凝结潜热释放增多(减少),该层垂直运动增强(减弱);同时,飑线系统区域环境释放的对流有效位能(CAPE)增大(减小),新生对流的强度增强(减弱)。低层水汽条件通过水汽输送和能量释放,改变冷池前沿新对流与中高层垂直环流的组织化结构,从而影响飑线强度。 The redistribution of physical factors and its impacts on the intensity of squall lines under the influence of low-level Vertical Wind Shear (VWS) and moisture content are examined through two-dimensional idealized simulations with the ARPS model (the University of Oklahoma's Advanced Research Prediction System). It shows that the redistribution of momentum, heat and moisture during the evolution of squall lines leads to the change of inner vertical circulation and the configuration of perturbation temperature and humidity, which affects the organization of deep convection and the intensity of the system. The results of sensitivity tests of low-level VWS and moisture content show that increasing (decreasing) the low-level VWS decelerates (accelerates) the propagation of the squall line, and makes the connection (separation) between the mid-level upward current and the new forced updrafts at the front edge of the cold pool, which corresponds to the intensification (weakening) of the squall line. On the other hand, increasing (decreasing) the low-level moisture content results in an increase (decrease) of moisture delivery from the low to middle level, which enhances (weakens) the mid-level latent heating and upward movement. Energy analysis indicates that the low-level moisture change influences the release of Convective Available Potential Energy (CAPE), and the intensity of the new convection. The combined effects of latent heating and CAPE released from low-level moisture change also affect the squall line intensity through exerting an influence on the organization of the upper-level upward currents and the new forced updrafts at the front edge of the cold pool.
出处 《大气科学》 CSCD 北大核心 2016年第4期689-702,共14页 Chinese Journal of Atmospheric Sciences
基金 国家重点基础研究发展计划(973计划)项目2013CB430103 国家自然科学基金项目41275002 41230421 江苏省高校自然科学研究重大项目14KJA170005 江苏省"333高层次人才培养工程"项目 灾害天气国家重点实验室开放课题(2014LASW-B08)~~
关键词 飑线 数值模拟 冷池 环境垂直风切变 水汽 Squall line, Numerical simulation, Cold pool, Vertical Wind Shear, Moisture
  • 相关文献

参考文献27

  • 1Bluestein H B, Jain M H. 1985. Formation of mesoscale lines of precipitation: Severe squall lines in Oklahoma during the spring [J]. J. Atmos. Sci., 42 (16): 1711-1732.
  • 2Bluestein H B, Marx G T, Jain M H. 1987. Formation of mesoscale lines of precipitation: Non-Severe squall lines in Oklahoma during the spring [J]. Mon. Wea. Rev., 115 (11): 2719-2727.
  • 3陈明轩,王迎春.低层垂直风切变和冷池相互作用影响华北地区一次飑线过程发展维持的数值模拟[J].气象学报,2012,70(3):371-386. 被引量:130
  • 4Coniglio M C, Corfidi S F, Kain J S. 2012. Views on applying RKW theory: An illustration using the 8 May 2009 derecho-producing convective system [J]. Mon. Wea. Rev., 140 (3): 1023-1043.
  • 5Fovell R G Ogura Y. 1988. Numerieal simulation of a mid-latitude squall line in two dimensions [J]. J. Atmos. Sci., 45 (24): 3846-3879.
  • 6Fujita T. 1955. Results of detailed synoptic studies of squall lines [J]. Tellus, 7 (4): 405-436.
  • 7Houze Jr R A, Biggerstaff M I, Rutledge S A, et al. 1989. Interpretation of Doppler weather radar displays of midlatitude mesoscale convective systems [J]. Bull. Amer. Meteor. Sot., 70 (6): 608-619.
  • 8Lin Y L, Farley R D, Orville H D. 1983. Bulk parameterization of the snow field in a cloud model [J]. J. Climate Appl. Meteor., 22 (6): 1065-1092.
  • 9Meng Z Y, Yah D C, Zhang Y J. 2013. General features of squall lines in East China [J]. Mon. Wea. Rev., 141 (5): 1629-1647.
  • 10Mueller C K, Carbone R E. 1987. Dynamics of a thunderstorm outflow [J]. J Atmos. Sci., 44 (15): 1879-1898.

二级参考文献27

  • 1刘淑媛,孙健,杨引明.上海2004年7月12日飑线系统中尺度分析研究[J].气象学报,2007,65(1):84-93. 被引量:30
  • 2王俊,朱君鉴,任钟冬.利用双多普勒雷达研究强飑线过程的三维风场结构[J].气象学报,2007,65(2):241-251. 被引量:37
  • 3刘流,甘一忠,李明.“中绿一号”生长特性与气象条件关系[J].广西气象,1990,11(3):46-49. 被引量:1
  • 4Bluestein H B, Jain M H. 1985. Formation of mesoscale lines of precipitation: Severe squall lines in Oklahoma during the spring. J Atmos Sei, 42(16) : 1711-1732.
  • 5Bryan G H, Fritsch J M. 2002. A benchmark simulation for moist nonhydrostatic numerical models. Mon Wea Rev, 130 (12): 2917-2928.
  • 6Droegemeier K K, Wilhelmson R B. 1987. Numerical simulation of thunderstorm outflow dynamics. Part 1 Outflow sensitivity ex- periments and turbulence dynamics. J Atmos Sci, 44(8) .. 1180- 1210.
  • 7Fovell R G, Ogura Y. 1988. Numerical simulation of a midlatitude squall line in two dimensions. J Atmos Sci, 45(24) : 3846-3879.
  • 8Fovell R G, Tan P H. 1998. The temporal behavior of numerically simulated multicell-type storms. Part II: The convective cell life cycle and cell regeneration. Mon Wea Rev, 126(3) : 551 577.
  • 9Lafore J P, Moncrieff M W. 1989. A numerical investigation of the organization and interaction of the convective and stratiform re gions of tropical squall lines. J Atmos Sei, 46(4) .. 521-544.
  • 10Newton C W. 1950. Structure and mechanism of the prerontal squall line. J Meteor, 7(3) : 210-222.

共引文献165

同被引文献382

引证文献35

二级引证文献346

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部