期刊文献+

基于栅格法的桥式起重机路径规划技术研究 被引量:5

Research of Bridge Crane Path Planning Technology Based on Grid Method
下载PDF
导出
摘要 原有的桥式起重机路径规划算法完全仿照智能机器人路径规划的方法,得到的最优路径在实际应用中不能满足人们的需求,自动转载消耗的时间比人工手动转载还要长。在分析桥式起重机运行系统的特点后,通过栅格法限制最优路径的转角角度,同时将路径的拐点数转换为长度,最终得到了用时最短的最优路径。通过仿真和实验,并与原有的方法相比较,证明了改进的算法能够在路径规划环节提高桥式起重机自动转载的效率。 Original bridge crane exactly likes intelligent robot path planning algorithm of road king planning method,and the gotten optimal path can not satisfy people's needs in the practical application,which leads to the consumption of automatic transfer time longer than manual transfer. After analyzing the characteristics of bridge crane operation system,through the grid method to limit the optimal path of corner angle,at the same time,converted inflexion point number to a length of the path,finally the shortest optimal path was gotten. Through the simulation and experiment,and compared with the original method,it proves that the improved algorithm can improve the efficiency of bridge crane automatic transfer in the link of path planning.
出处 《机床与液压》 北大核心 2016年第15期23-25,101,共4页 Machine Tool & Hydraulics
关键词 桥式起重机 路径规划 效率 拐点转换 Bridge crane Path planning Efficiency Inflexion point transformation
  • 引文网络
  • 相关文献

参考文献1

二级参考文献18

  • 1韩永,刘国栋.动态环境下基于人工势场的移动机器人运动规划[J].机器人,2006,28(1):45-49. 被引量:36
  • 2蔡佐军,孙德宝,秦元庆,李宁.基于构型空间法的机器人路径规划研究[J].计算机与数字工程,2006,34(4):88-90. 被引量:7
  • 3马兆青,袁曾任.基于栅格方法的移动机器人实时导航和避障[J].机器人,1996,18(6):344-348. 被引量:91
  • 4TAKAHASHI O, SCHILLING R J. Motion planning in a plane - using generalized voronoi digrams [J]. IEEE Trans Robotics and Automation, 1989,5 (2):143-150.
  • 5BROOKS R A. Solving the Find-path problem by good repre-sentation of free space [J]. IEEE Trans on Sys Man and Cybem, 1983,13(3):190-197.
  • 6CHOSET H,ACAR E,RIZZI A A, et al. Exact Cellular Decompositions in Trems of Critical Points of Morse Functions [C ]. IEEE International Conference on Robotics and Automation ,2000.
  • 7KHATIB O. Real-time Obstacle Avoidance for Manipulators and Mobile Robots[J]. Robotics Research, 1986,5( 1 ):90-98.
  • 8TU KUO-YANG. Design of fuzzy potential energy(FPE) for control of a soccer robot [C]. IEEE Int Conf on Networking,Sensing and Control, 2004.
  • 9SIMON X YANG, MAX MENG. An Efficient Neural Network Approach to Dynamic Robot Motion Planning[J]. Neural Networks,2000,13(2):143-148.
  • 10LIANFANG TIAN, CURTIS COLLINS. An effective robot trajectory planning method using a genetic algorithm[J]. Mechatronics,2004, ( 14):455 - 470.

共引文献14

同被引文献36

引证文献5

二级引证文献17

;
使用帮助 返回顶部