期刊文献+

基于核函数的加权极限学习机污水处理在线故障诊断 被引量:9

Online fault diagnosis in wastewater treatment process by kernel-based weighted extreme learning machine
下载PDF
导出
摘要 污水生化处理中的运行故障会引起出水水质不达标、运行费用增高和环境二次污染等严重问题,需要及时准确地对运行故障进行诊断。考虑到污水处理过程运行状态数据的不平衡性造成故障诊断准确率下降,提出了一种基于核函数的加权极限学习机污水处理过程实时在线故障诊断方法。该方法以极限学习机为基础,采用加权的方式处理数据的不平衡特性,通过核函数的非线性映射来提高数据线性可分的程度。仿真实验证明,本文建立的污水处理在线故障诊断模型在线测试精度高,泛化性能好,模型在线更新速度快,能够比较好地满足准确性和实时性,实现对污水处理过程的在线故障诊断。 Operation faults in biochemical wastewater treatment process often result in serious issues such as effluent water below quality specification, high operation cost, and secondary environmental pollution, therefore spontaneous and accurate diagnoses are required. Considered the poor accuracy of fault diagnosis induced by imbalanced characteristics of the process data in wastewater treatment, a novel online fault diagnostic model for wastewater treatment process was proposed, i.e., the kernel-based weighted extreme learning machine. Based on extreme learning machine(ELM) theory, weighting scheme was used to resolve the data imbalance and the non-linear mapping of kernel function was used to improve the extent of linear separation. Simulation experiments showed that this online fault diagnostic model has higher measuring precision, better generalization ability, and faster online updating speed, and meet the requirement of accuracy and spontaneity. Therefore, the proposed method can be applied in real-time on-line fault diagnosis in wastewater treatment process.
出处 《化工学报》 EI CAS CSCD 北大核心 2016年第9期3817-3825,共9页 CIESC Journal
基金 国家自然科学基金项目(61473121) 广东省科技计划项目(2016A020221008) 2016年产学研重点项目(201604010032)~~
关键词 加权极限学习机 核函数 在线建模 污水处理 故障诊断 仿真实验 weighted extreme learning machine kernel function on-line modeling wastewater treatment fault diagnosis simulation experiment
  • 相关文献

参考文献15

  • 1胡俊刚,胡雪梅.城镇污水处理厂运营现状及自动化控制的应用[J].武汉理工大学学报,2002,24(11):66-67. 被引量:10
  • 2DE LA FUENTE M J, VEGA P. A Neural networks based approach for fault detection and diagnosis:application to a real process[C]//Proceedings of the 4th IEEE Conference on Control Applications (CCA 1995). 1995:188-193.
  • 3施汉昌,王玉珏.污水处理厂故障诊断专家系统[J].给水排水,2001,27(8):88-90. 被引量:26
  • 4范昕炜,杜树新,吴铁军.粗SVM分类方法及其在污水处理过程中的应用[J].控制与决策,2004,19(5):573-576. 被引量:15
  • 5LEE H J, AHN B S, PARK Y M. A fault diagnosis expert system for distribution substations[J]. IEEE Trans. on Power Delivery, 2000, 15(1):92-97.
  • 6刘成忠,韩俊英.基于邻域粗糙集的支持向量机在污水处理故障诊断中的应用[J].甘肃农业大学学报,2013,48(3):176-180. 被引量:3
  • 7TIPPING M E. The relevance vector machine[J]. Advances in Neural Information Processing Systems, 1999, 12(3):652-658.
  • 8TIPPING M E, FAUL A C. Fast marginal likelihood maximization for sparse bayesian models[C]//Proc. 9th International Workshop on Artificial Intelligence and Statistics. Key West, 2003:3-6.
  • 9GALAR M, FERNANDEZ A, BARRENECHEA E, et al. An over view of ensemble methods for binary classifiers in multi-class problems:experimental study on one-vs-one and one-vs-all schemes[J]. Pattern Recognit, 2011, 44(8):1761-1776.
  • 10HSU C W, LIN C J. A comparison of methods for multiclass support vector machines[J]. IEEE Trans. Neural Netw., 2002, 3(2):415-425.

二级参考文献27

  • 1苏宏升,李群湛.基于粗糙集理论和神经网络模型的变电站故障诊断方法[J].电网技术,2005,29(16):66-70. 被引量:28
  • 2胡清华.赵辉,于达仁.基于粗糙集的符号与数值属性的快速约简算法[C]//第七届中国Rough集与软计算学术会议.山西,太原,2007.
  • 3[1]V Vapnik. The Nature of Statistical Learning Theory[M]. New York: Springer-Verlag, 1995.
  • 4[2]Kreβel U. Pairwise classification and support vector machines [A]. Advances in Kernel Methods Support Vector Learning [C], Cambridge: MIT Press, 1999.255-268.
  • 5[3]Joachims T. Text categorization with support vector machines [R]. Dortmund: University of Dortmund,1997.
  • 6[4]Cai Y D, Liu X J, Xu X B, et al. Prediction of protein structural classes by support vector machines [J].Computers and Chemistry, 2002, 26(3). 293-296.
  • 7[5]Pawlak Z. Rough Sets-theoretical Aspects of Reasoning about Data [M]. Boston, London: Kluwer Academic Publishers, 1992. 1-53.
  • 8[6]Aleksander Ohrn. Discernibility and rough sets in medicine: Tools and applications [ D ]. Trondheim:Norwegian University of Science and Technology,1999.53,63-65.
  • 9[7]Scholkopf B, Smola A, Williamson R C, et al. New support vector algorithms [J]. Neural Computation,2000, 12(5): 1207-1245.
  • 10[8]Hsn C W, Lin C J. A comparison of methods for multiclass support vector machines[J]. IEEE Trans on Neural Networks, 2002, 13(2): 415-425.

共引文献48

同被引文献52

引证文献9

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部