期刊文献+

n-β-FeSi_2/p-Si异质结太阳电池的模拟及优化

Simulation and Optimization of the n-β-FeSi_2/p-Si Heterojunction Solar Cell
下载PDF
导出
摘要 运用AMPS-1D软件对n-β-FeSi_2/p-Si结构的异质结太阳电池进行模拟,分别讨论了在其他参数不变的情况下,改变β-FeSi_2层的厚度、β-FeSi_2层的掺杂浓度以及改变太阳电池的工作温度对电池性能的影响。模拟结果表明:β-FeSi_2层厚度增加时,转换效率和短路电流有较大的提高;开路电压也略有提升;填充因子则随着厚度的增加呈下降趋势。β-FeSi_2层掺杂浓度增加时,转换效率和开路电压有较大的提高;短路电流略微有所减小;而填充因子则先增加后减小,最后趋于稳定。工作温度增加时,转换效率和填充因子减小,而短路电流和开路电压则增大。经过优化参数,该结构的太阳电池转换效率达到26.241%。 In the article,n-β-FeSi_2/ p-Si heterojunction solar cell was simulated based on AMPS-1D software. In the case of other parameters are the same,the influences of the β-FeSi_2 layer thickness,β-FeSi_2 doping concentration and battery operating temperature on the solar battery performance were discussed. The results show that,a large increase in the conversion efficiency and short-circuit current with the increasing of the β-FeSi_2 layer thickness,and a small raises in the open circuit voltage. But a drops slightly in the fill factor with the increasing of theβ-FeSi_2 layer thickness. The conversion efficiency and open circuit voltage increase with the increasing of the doping concentration,and a small drops in the short-circuit current. The fill factor rises at first and then drops slightly with the doping concentration increases.The conversion efficiency and fill factor drops with the increase of operating temperature,but the short-circuit current and open circuit voltage increase. By optimizing the various parameters of the cell,the photoelectric conversion efficiency of n-β-FeSi_2/ p-Si solar cell can reach 26.241%.
出处 《贵州大学学报(自然科学版)》 2016年第3期72-75,共4页 Journal of Guizhou University:Natural Sciences
基金 国家自然科学基金项目(61264004) 贵州省青年英才培养工程项目(黔省专合字(2012)152号) 贵州省科技创新人才团队建设专项资金项目(黔科合人才团队[2011]4002) 贵州省科技厅 贵州大学联合资金项目(黔科合LH字[2014]7610)
关键词 β-FeSi_2 AMPS-1D软件 太阳电池 转换效率 光伏特性 β-FeSi_2 AMPS-1D solar cell conversion efficiency photovoltaic properties
  • 相关文献

参考文献10

二级参考文献31

  • 1王连卫,陈向东,林成鲁,邹世昌.一种新型光电材料──β-FeSi_2的结构,光电特性及其制备[J].物理,1995,24(2):83-89. 被引量:8
  • 2Lefki K, Muret P, Cherief N,et al. [J]. J Appl Phys, 1991, 69: 352-357.
  • 3Udono H, Kikuma I, Okuno T, et al. [J]. Appl Phys Lett,2004, 85:1937 -1939.
  • 4Jalali B, Fathpour S. [J]. J Lightwave Technol, 2006, 24: 4600-4615.
  • 5Katsumata H, Makita Y, Kobayashi N, et al. [J]. J Appl Phys, 1996, 80:5955 -5963.
  • 6Zhengxin L, Shinan W, Naotaka O, et al. [J]. Solar Energy Materials & Solar Cells, 2006, 90: 276-282.
  • 7Suemasu T, Negishi Y, Takakura K,et al. [J]. J Appl Phys, 2000, 39.. 1013-1015.
  • 8Mahan J, Geib K, Robinson G. [J]. Appl Phys Lett, 1990, 56.. 2126- 2128.
  • 9Akiyama K, Kaneko S, Hirabayashi Y, et al. [J]. Thin Solid Films, 2006, 508: 380-384.
  • 10Leong D, Harry M, Reeson K, et al. [J]. Appl Phys Lett, 1996, 68: 1649-1650.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部