期刊文献+

基于自适应粒子群优化算法的测试数据扩增方法 被引量:6

Test data augmentation method based on adaptive particle swarm optimization algorithm
下载PDF
导出
摘要 针对在回归测试中原有测试数据集往往难以满足新版本软件测试需求的问题,提出一种基于自适应粒子群算法(APSO)的测试数据扩增方法。首先,根据原有测试数据在新版本程序上的穿越路径与目标路径的相似度,在原有的测试数据集中选择合适的测试数据,作为初始种群的进化个体;然后,利用初始测试数据的穿越路径与目标路径的不同子路径,确定造成两者路径偏离的输入分量;最后,根据路径相似度构建适应度函数,利用APSO操作输入分量,生成新的测试数据。该方法针对四个基准程序与基于遗传算法(GA)和随机法的测试数据扩增方法相比,测试数据扩增效率分别平均提高了约56%和81%。实验结果表明,所提方法在回归测试方面有效地提高了测试数据扩增的效率,增强了其稳定性。 It is difficult for the original test data to meet the requirements of the new version of software testing in regression testing, thus a new test data augmentation method based on Adaptive Particle Swarm Optimization (APSO) algorithm was proposed to solve the problem. Firstly, according to the similarity between the cross path and the target path of the original test data in the new version of the program, the appropriate test data in the original test data was chosen as evolutionary individual of initial population. Secondly, taking advantage of different sub-paths of the cross path of initial test data and target path, the input component which caused deviation between them was confirmed. Finally, the fitness function was created according to the path similarity, and the new data was generated by using the APSO algorithm to operate the input component. Compared with the genetic algorithm based and random algorithm based test data augmentation methods on four benchmark programs, the augmentation efficiency of the proposed method was improved on average by approximately 56% and 81% respectively. The experimental results show that the proposed method can effectively increase the efficiency and improve the stability of test data augmentation in regression testing.
出处 《计算机应用》 CSCD 北大核心 2016年第9期2492-2496,共5页 journal of Computer Applications
基金 陕西省自然科学基金资助项目(2015JM6359) 西安市科技计划项目(CXY1516(4)) 陕西省教育厅自然科学基金资助项目(15JK1672 15JK1678) 陕西省工业攻关项目(2016GY-089)~~
关键词 回归测试 目标路径 测试数据扩增 路径相似度 粒子群优化算法 regression testing target path test data augmentation path similarity Particle Swarm Optimization (PSO)algorithm
  • 相关文献

参考文献12

  • 1张智轶,陈振宇,徐宝文,杨瑞.测试用例演化研究进展[J].软件学报,2013,24(4):663-674. 被引量:27
  • 2SANTELICES R, CHITTIMALLI P K, APIWATTANAPONG T, et al. Test-suite augmentation for evolving software [C]// ASE '08: Proceedings of the 2008 23th IEEE/ACM International Conference on Automated Software Engineering. Washington, DC: IEEE Computer Society, 2008: 218-227.
  • 3QI D, ROYCHOUDHURY A, LIANG Z. Test generation to expose changes in evolving programs [C]// ASE '10: Proceedings of the 25th IEEE/ACM International Conference on Automated Software Engineering. New York: ACM, 2010: 397-406.
  • 4VOAS J M. PIE: a dynamic failure-based technique [J]. IEEE Transactions on Software Engineering, 1992, 18(8): 717-727.
  • 5PEARL J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference [M]. San Francisco, CA: Morgan Kaufmann, 1988: 35.
  • 6XU Z, ROTHERMEL G. Directed test suite augmentation [C]// APSEC 2009: Proceedings of the 2009 International Conference on the Asia-Pacific Software Engineering. Washington, DC: IEEE Computer Society, 2009: 406-413.
  • 7巩敦卫,任丽娜.回归测试数据进化生成[J].计算机学报,2014,37(3):489-499. 被引量:13
  • 8吴川,巩敦卫.基于路径相关性的回归测试数据进化生成[J].计算机学报,2015,38(11):2247-2261. 被引量:7
  • 9BUENO P M S, JINO M. Automatic test data generation for program paths using genetic algorithms [J]. International Journal of Software Engineering and Knowledge Engineering, 2002, 12(6): 691-709.
  • 10胡旺,李志蜀.一种更简化而高效的粒子群优化算法[J].软件学报,2007,18(4):861-868. 被引量:336

二级参考文献50

  • 1邱晓康,李宣东.一个面向路径的软件测试辅助工具[J].电子学报,2004,32(F12):231-234. 被引量:12
  • 2赫然,王永吉,王青,周津慧,胡陈勇.一种改进的自适应逃逸微粒群算法及实验分析[J].软件学报,2005,16(12):2036-2044. 被引量:134
  • 3章晓芳,徐宝文,聂长海,史亮.一种基于测试需求约简的测试用例集优化方法[J].软件学报,2007,18(4):821-831. 被引量:59
  • 4Ahmed M A, Hermadi I. GA-based multiple paths test data generator[ J ]. Computers and Operations Research, 2008, 35 (10) :3107 - 3124.
  • 5Bueno P M S, Jino M. Automatic test data generation for pro- gram paths using genetic algorithms[ J]. International Journal of Software Engineering and Knowledge Engineering, 2002, 12 (6) :691 - 709.
  • 6Lin J, Yeh P. Automatic test data generation for path testing us- ing GAs[ J] .Information Sciences, 2001,131 (1-4) :47 - 64.
  • 7Korel B. Automated software test data generation [ J ]. IEEE Transaction on Software Engineering, 1990,16(8) : 870 - 879.
  • 8Offutt J, Jin Z, Pan J. The dynamic domain reduction procedure for test data generation[ J] .Software Practice and Experience, 1999,29(2) :167 - 193.
  • 9Harman M, McMinn P, Wegener J. The impact of input domain reduction on search-based test data generation[ A]. Proceedings of the ACM SIGSOFT Symposium on the Foundations of Soft- ware Engineering [ C ]. New York: ACM Press, 2007. 155 - 164.
  • 10Harman M, Islam F, Xie T, Wappler S. Automated test data generation for aspect-oriented programs [ A ]. Proceedings of the 8th International Conference on Aspect-Oriented Software Development[ C] .New York: ACM Press,2009. 185 - 196.

共引文献386

同被引文献30

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部