期刊文献+

卷积神经网络研究综述 被引量:559

Survey of convolutional neural network
下载PDF
导出
摘要 近年来,卷积神经网络在图像分类、目标检测、图像语义分割等领域取得了一系列突破性的研究成果,其强大的特征学习与分类能力引起了广泛的关注,具有重要的分析与研究价值。首先回顾了卷积神经网络的发展历史,介绍了卷积神经网络的基本结构和运行原理,重点针对网络过拟合、网络结构、迁移学习、原理分析四个方面对卷积神经网络在近期的研究进行了归纳与分析,总结并讨论了基于卷积神经网络的相关应用领域取得的最新研究成果,最后指出了卷积神经网络目前存在的不足以及未来的发展方向。 In recent years, Convolutional Neural Network (CNN) has made a series of breakthrough research results in the fields of image classification, object detection, semantic segmentation and so on. The powerful ability of CNN for feature learning and classification attracts wide attention, it is of great value to review the works in this research field. A brief history and basic framework of CNN were introduced. Recent researches on CNN were thoroughly summarized and analyzed in four aspects: over-fitting problem, network structure, transfer learning and theoretic analysis. State-of-the-art CNN based methods for various applications were concluded and discussed. At last, some shortcomings of the current research on CNN were pointed out and some new insights for the future research of CNN were presented.
出处 《计算机应用》 CSCD 北大核心 2016年第9期2508-2515,2565,共9页 journal of Computer Applications
基金 国家科技支撑计划项目(2012BAH44F02) 广东省产学研项目(M17010601CXY2011057)~~
关键词 卷积神经网络 深度学习 特征表达 神经网络 迁移学习 Convolutional Neural Network (CNN) deep learning feature representation neural network transferlearning
  • 相关文献

参考文献68

  • 1LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition [J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
  • 2HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets [J]. Neural Computation, 2006, 18(7): 1527-1554.
  • 3LEE H, GROSSE R, RANGANATH R, et al. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations [C]// ICML '09: Proceedings of the 26th Annual International Conference on Machine Learning. New York: ACM, 2009: 609-616.
  • 4HUANG G B, LEE H, ERIK G. Learning hierarchical representations for face verification with convolutional deep belief networks [C]// CVPR '12: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2012: 2518-2525.
  • 5KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks [C]// Proceedings of Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2012: 1106-1114.
  • 6GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2014: 580-587.
  • 7LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2015: 3431-3440.
  • 8SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [EB/OL]. [2015-11-04]. http://www.robots.ox.ac.uk:5000/~vgg/publications/2015/Simonyan15/simonyan15.pdf.
  • 9SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2015: 1-8.
  • 10HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [EB/OL]. [2016-01-04]. https://www.researchgate.net/publication/286512696_Deep_Residual_Learning_for_Image_Recognition.

二级参考文献113

  • 1BENGIO Y, DELALLEAU O. On the expressive power of deep archi- tectures[ C ]//Proc of the 14th International Conference on Discovery Science. Berlin : Springer-Verlag, 2011 : 18 - 36.
  • 2BENGIO Y. Leaming deep architectures for AI[ J]. Foundations and Trends in Machine Learning ,2009,2 ( 1 ) : 1-127.
  • 3HINTON G,OSINDERO S,TEH Y. A fast learning algorithm for deep belief nets [ J ]. Neural Computation ,2006,18 (7) : 1527-1554.
  • 4BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks [ C ]//Proc of the 12th Annual Conference on Neural Information Processing System. 2006:153-160.
  • 5LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning ap- plied to document recognition[ J]. Proceedings of the iEEE, 1998, 86( 11 ) :2278-2324.
  • 6VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[ C ]//Proc of the 25th International Conference on Machine Learning. New York: ACM Press ,2008 : 1096-1103.
  • 7VINCENT P, LAROCHELLE H, LAJOIE I, et aL Stacked denoising autoencoders:learning useftd representations in a deep network with a local denoising criterion [ J ]. Journal of Machine Learning Re- search ,2010,11 ( 12 ) :3371-3408.
  • 8YU Dong, DENG Li. Deep convex net: a scalable architecture for speech pattern classification [ C]//Proc of the 12th Annual Confe-rence of International Speech Comunication Association. 2011 : 2285- 2288.
  • 9POON H, DOMINGOS P. Sum-product networks:a new deep architec- ture[ C ]//Proc of IEEE Intemational Conference on Computer Vi- sion. 2011:689-690.
  • 10BENGIO Y,LECUN Y. Scaling learning algorithms towards AI[ M]// BOTTOU L,CHAPELLE O, DeCOSTE D,et al. Large-Scale Kernel Machines. Cambridge: MIT Press ,2007:321-358.

共引文献1087

同被引文献3867

引证文献559

二级引证文献4185

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部