期刊文献+

耦合模拟退火优化最小二乘支持向量机的日参照蒸散量模拟计算 被引量:7

Simulation of Daily Reference Evapotranspiration Based on Least Squares Support Vector Machine Optimized by Coupled Simulated Annealing
下载PDF
导出
摘要 针对传统最小二乘支持向量机模型的训练速度慢、不易在线训练、计算量大及参数选择困难等缺陷,提出采用耦合模拟退火优化最小二乘支持向量机算法,建立基于耦合模拟退火优化最小二乘支持向量机的参照作物蒸散量预测模型。选取陕西省的榆林、安康和西安气象站监测的1971-2014年气象资料进行模型训练、测试与验证,研究气象监测获取原始数据作为网络输入,参照蒸散量ET0为输出,构建CSA-LSSVM预测模型,并将CSA-LS-SVM预测结果与LSSVM模型及经典ET0模型模拟计算结果进行比较。结果表明,CSA-LS-SVM模型模拟计算精度和总ET0模拟模型都优于LSSVM模型及其他经典模型模拟结果。该研究CSA-LS-SVM模型为陕西地区气象资料缺乏情况下ET0精确计算提供科学依据,为作物需水量的智能决策提供参考。 According to the traditional Least squares support vector machine had defects, which mainly include training with a slow speed, the data sample, and selecting parameter difficulty, the prediction model of CSA-LS-SVM of daily reference crop evapotrans- piration was examined in the paper. In the current study, the applicability of CSA-LS-SVM in ETo modeling was assessed using the original meteorological data of 1971--2014 in Yulin, Ankang and Xi'an of Shaanxi, China, which put that eight parameters as input, the reference evapotranspiration values as output. In addition, LSSVM, Hargreaves, Priestley-Taylor models and the CSA-LS-SVM model were tested against the FAO-56 PM model in terms of performance by using commonly used criteria. Experimental results demonstrate that the performed of CSA-LS-SVM model better than the model of ELM, also significantly better than other empirical model. Furthermore, the same result of the total ETo estimation. The research could provide a reference to accurate ETo estimation and give a reference of crop water requirement of the intelligent irrigation decision in Shaanxi.
出处 《节水灌溉》 北大核心 2016年第9期133-138,142,共7页 Water Saving Irrigation
基金 "十三五"国家重点研发计划(2016YFC0400202) 2014年陕西省科学技术研究发展计划项目(2014K01-33-02) 西安市现代农业创新计划项目(NC1310(1))
关键词 日参照蒸散量 耦合模拟退火 超参数 最小二乘支持向量机 Daily reference evapotranspiration coupled simulated annealing hyper-parameters Least squares support vector machine
  • 相关文献

参考文献11

  • 1Allen R G,Pereiral L S,Raes D,et al.Crop Evapotranspiration:Guidelines for Computing Crop Water Requirements[M].Rome:FAO Irrigation and Drainage 56,1998.
  • 2冯禹,崔宁博,龚道枝,魏新平,王君勤.基于极限学习机的参考作物蒸散量预测模型[J].农业工程学报,2015,31(S1):153-160. 被引量:54
  • 3Ozgur Kisi.Least squares support vector machine for modeling daily reference evapotranspiration[J].Irrig Sci,2013.31:611-619.
  • 4Shiri J,Kisi O,Landeras G,et al.Daily reference evapotranspi-ration modeling by using genetic programming approach in theBasque Country (Northern Spain)[J].Journal of Hydrology,2012,414/415:302-316.
  • 5Kisi O.Evapotranspiration modeling using a wavelet regressionmodel[J].Irrig Sci,2011a,29(3):241-252.
  • 6Kisi O.Modeling reference evapotranspiration using evolutionaryneural networks[J].ASCE J Irrig Drain Eng,2011b,137(10):636-643.
  • 7Marti P,Gonzalez-Altozano P,Gasque M.Reference evapotrans-piration estimation without local climatic data[J].Irrig Sci,2011b,29:479-495.
  • 8Kumar M,Raghuwanshi NS,Singh R.Artificial neural networksapproach in evapotranspiration modeling:a review[J].Irrig Sci,2011,29:11-25.
  • 9张育斌,魏正英,马胜利,李飚,唐大辉.极端天气下作物参照蒸散量计算方法研究[J].中国农村水利水电,2014(12):64-68. 被引量:8
  • 10郭振凯,宋召青,毛剑琴.一种改进的在线最小二乘支持向量机回归算法[J].控制与决策,2009,24(1):145-148. 被引量:22

二级参考文献74

共引文献86

同被引文献48

引证文献7

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部