期刊文献+

面向桥梁结构状态预测的ARMA-GM组合时序模型研究 被引量:4

Study on ARMA-GM Combined Time-series Model for Structural State Prediction of Bridges
下载PDF
导出
摘要 桥梁健康监测数据中蕴含引起桥梁结构状态变化的信息,通过分析其特征变化而实现结构状态预测的方法已得到工程界和学术界的重视。为了克服单一时间序列模型ARMA和灰色关联模型GM(1,1)在桥梁结构状态预测中的不足,提出一种ARMA-GM组合时序预测模型,以描述监测数据序列前后之间的数学关系,并对未来某一时间段内的监测值进行预测。实验结果表明:组合模型在预测步长增大时预测的平稳性好,而且比单一模型的预测精度更高,能够为桥梁结构安全状态评估提供宝贵的预测数据。 The bridge health monitored data contained the information indicating the structural state changes of bridges. The method for structural state prediction by analyzing the data feature variations has drawn the attention in engineering and academic field. To overcome the weakness of single time-series model of ARMA and Grey-relation model of GM ( 1,1 ) in the structural state prediction, a combined time-series model of ARMA-GM was proposed to describe the mathematical relationship between the former and later monitored data series, and to achieve the prediction of the values monitored in a future period. The experiment results show that the proposed combined model demonstrated better stability and higher prediction accuracy than the single model when the prediction step is lengthened. Consequently the proposed combined model can provide the valuable predicting data for structural safety assessment of bridges.
出处 《重庆交通大学学报(自然科学版)》 CAS 北大核心 2016年第4期6-9,24,共5页 Journal of Chongqing Jiaotong University(Natural Science)
基金 国家自然科学基金项目(11372366 51508059) 重庆市教委自然科学基金项目(KJ1403209)
关键词 桥梁工程 ARMA-GM组合模型 状态预测 bridge engineering combined model of ARMA-GM state predict
  • 相关文献

参考文献10

二级参考文献41

  • 1陈志为,林友勤,任伟新.用AR模型判断结构损伤的方法[J].福州大学学报(自然科学版),2005,33(z1):301-304. 被引量:4
  • 2高品贤.趋势项对时域参数识别的影响及消除[J].振动.测试与诊断,1994,14(2):20-26. 被引量:28
  • 3费庆国,李爱群,张令弥.基于神经网络的非线性结构有限元模型修正研究[J].宇航学报,2005,26(3):267-269. 被引量:30
  • 4谢献忠,易伟建.结构物理参数时域识别的子结构方法研究[J].工程力学,2005,22(5):94-98. 被引量:15
  • 5欧进萍.重大工程结构的智能监测与健康诊断[C].崔京浩,编.第十一届结构工程学术会议论文集,第十一届全国结构工程学术会议,长沙.2002-10-20-23.北京:清华大学出版社,2002:44-53.
  • 6Doebling S W, Farrar C R, Prime M B. Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: a literature review[ R]. USA: Los Alamos National Laboratory ( No. LA- 13070-MS), 1996:5 - 62.
  • 7Sohn H, Farrar C R. Damage diagnosis using time series analysis of vibration signals [ J ]. Journal of Smart Materials and Structures,2001,10 ( 3 ) : 446 - 451.
  • 8Nair K K, Kiremidjian A S, Law K H. Time series-based damage detection and localization algorithm with application to the ASCE benchmark structures [ J ]. Journal of Sound and Vibration, 2006, 291 (1/2) :349368.
  • 9Cheung A, Cabrera C, Sarabandi P, et al. The application of statistical pattern recogrfition methods for damage detection to field data[J]. Smart Materials and Structures,2008,12:1 -12.
  • 10Nair K K, Kiremidjian A S. Time series based structural damage detection algorithm using gaussian mixtures modeling [ J ]. Journal of Dynamic Systems, Measurement, and Control, 2007,129 ( 3 ) :258 - 293.

共引文献49

同被引文献39

引证文献4

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部