期刊文献+

深度信念网在模拟电路故障诊断中的应用研究 被引量:8

Application of DBN in Analog Circuit Fault Diagnosis
下载PDF
导出
摘要 针对模拟电路故障诊断中特征提取的难题,引入深度信念网模型,在Leapfrog滤波器电路上对深度信念网、单隐层BP网络和三隐层BP网络三种模型做分类对比实验,实验证明了深度信念网应用的可行性和有效性.基于带通电路,设计实验对比了深度信念网、小波分析方法及单隐层BP网络的特征提取能力,结果表明深度信念网特征提取能力明显优于小波分析和单隐层BP网络,提取的特征更能反映数据本质. In view of the problem of feature extraction for analog circuit fault diagnosis, model of deep belief network (DBN) is introduced in this paper. Comparison experiments on Leapfrog Filter with a group of models including DBN, single hidden layer BP and three hidden layer BP prove that the model of DBN is feasible and effective. Moreover, according to the experiment on band pass filters with methods of wavelet analysis, DBN and single hidden layer BP network, the results show that the ability of feature extraction of DBN is better and the feature of extraction is closer to the essence of data.
作者 颜学龙 邵伟
出处 《微电子学与计算机》 CSCD 北大核心 2016年第9期159-163,共5页 Microelectronics & Computer
关键词 深度学习 深度信念网 模拟电路 故障诊断 特征提取 deep learning deep belief network analog circuit fault diagnosis feature extraction
  • 相关文献

参考文献9

  • 1孟凡斌,唐圣学,谭子尤.基于小波和主元分析的容差电路的故障诊断方法[J].微电子学与计算机,2010,27(11):135-138. 被引量:4
  • 2刘美容,张立玮.基于小波分解和模糊聚类的模拟电路软故障诊断[J].微电子学与计算机,2014,31(12):140-143. 被引量:12
  • 3Hinton G E, Salakhutdinov R R. Reducing the dimen- sionality of data with neural networks I-J]. Science, 2006, 313(5786) : 504-507.
  • 4Hinton G E. A practical guide to training restricted boltzmann machines[M]. Neural Networks: Tricks ofthe Trade of the series Lecture Notes in Computer Sci- ence,2012,9(1) .599-619.
  • 5Hinton G E. Training products of experts by minimi- zing eontrastive divergence]- J3. Neural Computation, 2002, 14(8) :1771-1800.
  • 6Geoffrey H. Where do features come from? [J]. Cog- nitive Science A Multidisciplinary Journal, 2013, 38 (6):1078-1101.
  • 7Bengio Y. Learning deep architectures for AIEJ-I. Foundations ~ Trends in Machine Learning, 2009, 2 (1):1-127.
  • 8王承,陈光,谢永乐.小波-神经网络在模拟电路故障诊断中的应用[J].系统仿真学报,2005,17(8):1936-1938. 被引量:34
  • 9Zhang L, Sun L, Cai X, et al. Analog circuit fault di- agnosis based on the wavelet analysis and EM algo- rithm of limited gaussian mixture model[J]. Interna- tional Journal of Advancements in Computing Technol- ogy, 2013,10(5) .32-42.

二级参考文献22

  • 1王军锋,张维强,宋国乡.模拟电路故障诊断的多小波神经网络算法[J].电工技术学报,2006,21(1):33-36. 被引量:16
  • 2禹旺兵,彭良玉,禹恒州.基于小波分析和神经网络的模拟电路故障诊断方法[J].微电子学与计算机,2007,24(7):43-46. 被引量:10
  • 3Aminian M, Aminian F. Neural - network based analogcircuit fault diagnosis using wavelet transform as preproeessot[J]. IEEE Trans. Circuits. Syst. - II, 2000,44(3): 151 - 156.
  • 4Aminian F, Aminian M, Collins H W. Analog fault diagnosis of actual circuits using neural networks [J ]. IEEE. Trans. Instrum. Meas(S0018 - 9456), 2002, 51 (3) : 544 - 550.
  • 5He Y, Tan Y, Sun Y. Wavelet neural network approach for fault diagnosis of analogue circuits[J]. IEE Proc. - Circuits Devices Syst, 2004,151 (4) : 379 - 384.
  • 6P Duhamel, J C Rault. Automatic Test Generation Techniques for Analog Circuits and Systems: A Review [J]. IEEE Trans. Circ. Syst., 1979, CAS-26(7): 411-439.
  • 7J W Bandler, A E Salama. Fault diagnosis of analog circuits [C]. Proc. IEEE, 1985, 73: 1279-1325.
  • 8M Catelani, A Fort. Soft fault detection and isolation in analog circuits: Some results and a comparison between a fuzzy approach and radial basis function networks [J]. IEEE Trans. Instr & Meas., 2002, 51: 196-202.
  • 9R Spina, S Upadhyaya. Linear circuit fault diagnosis using neuromorphic analyzers [J]. IEEE Trans. Circuits Syst. II, 1997, 44: 188-196.
  • 10Y Deng, Y He, Y Sun. Fault diagnosis of analog circuits with tolerances using artificial neural networks [C]. The 2000 IEEE Asia-Pacific Conf. Circuits Syst., 2000, 292-295.

共引文献46

同被引文献104

引证文献8

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部