期刊文献+

基于双向A*算法的城市无人机航路规划 被引量:19

Urban UAV route planning based on bidirectional A* algorithm
下载PDF
导出
摘要 应用双向A*算法对在城市环境中的无人机进行航路规划,对比传统的A*搜索算法,双向A*搜索算法提高了搜索的效率,大大缩短了航路规划的时间。同时针对双向A*算法现有的不足,对双向A*算法进行改进,提出了同步双向A*搜索算法思想,通过编程实现双向A*算法正向搜索和反向搜索同步进行,并且采用栅格法对无人机的飞行环境进行建模,在建模时充分考虑城市环境确定栅格的大小。通过实验验证,同步双向A*算法可以快速为无人机规划出航路,且航路可飞,对比改进前的双向A*算法,同步双向A*算法的航路规划速度更快,效率更高。 The bidirectional A*algorithm was applied in the urban UAV route planning. Compared with the traditional A*search algorithm,the synchronous bidirectional A*search algorithm,the improved bidirectional A*search algorithm,has higher search efficiency,and saves great time of route planning. Experiment was built to realize the forward search and the backward search working on the same time by using the grid method to build the environment model for UAVs. It was fully considered that the urban environment to determine the grid size while building the environment model. Experimental result shows that the synchronous bidirectional A*algorithm is more efficient since it can make the route planning faster for UAVs and the route flyable.
作者 林娜 李天啸
出处 《沈阳航空航天大学学报》 2016年第4期55-60,共6页 Journal of Shenyang Aerospace University
基金 辽宁省自然科学基金联合基金(项目编号:2015020008) 辽宁省自然科学基金(项目编号:20102175) 辽宁省高等学校优秀人才支持计划(项目编号:LJQ2012011)
关键词 无人机 双向A* 栅格法 城市环境 航路规划 unmanned aerial vehicle(UAV) bidirectional A* grid the urban environment route planning
  • 相关文献

参考文献16

  • 1SZCZERBA ROBERT J. Robust algorithm for real- time route planning [J].IEEE Transaction son Aero- space and Electronic Systems ( S0018 - 9251 ), 2000, 36 (3) :869 - 878.
  • 2何雨枫,曾庆化,王云舒,陈磊江,李雪琛.室内微型飞行器实时路径规划算法研究[J].电子测量技术,2014,37(2):23-27. 被引量:17
  • 3LAVALLE SM, KUFFNER J J. Rapidly-exploring random trees : progress and prospects E C ]. Proceedings of the Fourth Workshop on the Algorithmic Founda- tions of Robotics. Dartmauth, MA,2000:293 - 308.
  • 4黄文刚,张怡,姜文毅,廉晶晶.基于改进稀疏A~*算法的无人机航路规划[J].遥测遥控,2012,33(6):12-16. 被引量:8
  • 5WANG N, GU X, CHEN J, et al. A hybrid neural net- work method for UAV attack route integrated planning[ C ]. The 6th International Symposium on Neural Networks, Wuhan ,2009,5553:226 - 235.
  • 6GENG Q, ZHAO Z. A kind of route planning method for UAV based on improved PSO algorithm~ C]. The 25th Chinese Control and Decision Conference Guiy- ang,2013:2328 - 2331.
  • 7陈谋,肖健,姜长生.基于改进蚁群算法的无人机三维航路规划[J].吉林大学学报(工学版),2008,38(4):991-995. 被引量:30
  • 8RODRIGUEZ S,TANG X,LIEN J,et al. An obstacle- based rapidly-exploring random tree [ C ]. The 2006 IEEE International Conference on Robotics and Auto- marion, ICRA 2006,2006, Orlando, FL, United states.
  • 9宋建梅,李侃.基于A*算法的远程导弹三维航迹规划算法[J].北京理工大学学报,2007,27(7):613-617. 被引量:31
  • 10ZHANG B, MAO Z, LIU W, et al. Geometric rein- forcement learning for path planning of UAVs E J ]. Journal of Intelligent and Robotic Systems:Theory and Applications,77 ( 2 ) : 391 - 409.

二级参考文献64

共引文献130

同被引文献208

引证文献19

二级引证文献186

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部