期刊文献+

基于互信息的分散式动态PCA故障检测方法 被引量:33

Fault detection by decentralized dynamic PCA algorithm on mutual information
下载PDF
导出
摘要 对现代大型复杂动态过程来讲,不同测量变量会存在不同的序列相关性,而且变量间的相互影响会体现在不同的采样时刻上。为此,结合利用分散式建模的优势,提出一种基于互信息的分散式动态过程故障检测方法。该方法在对每个测量变量都引入多个延时测量值后,利用互信息为每个变量区分出与其相关的测量值,并建立起相应的变量子块。这种变量分块方式使每个变量子块都能充分地获取与之相对应的自相关性与交叉相关性信息,较好地处理了数据的动态性问题。然后,利用主元分析(PCA)算法对每一变量子块进行统计建模从而建立起适于大规模动态过程的多模块化的故障检测模型。最后,通过实例验证该方法用于动态过程监测的可行性和有效性。 For modern large-scale complex dynamic processes, different measured variables have their own serial correlations and interactions among these variables show on different time points. A mutual information based dynamic fault detection method was proposed by an advantageously decentralized modeling strategy. After made multiple time-delayed observations on each variable, the relevant measurements for the variable were separated from all observations by utilizing mutual information and corresponding variable sub-blocks were created. This approach of variable grouping allowed each variable sub-block to capture sufficient information about its own self- and inter-correlations such that the dynamic characteristics of process data could be well analyzed. The principal component analysis(PCA) algorithm was employed to construct statistical modeling on each variable sub-block and a decentralized dynamic fault detection model for large-scale dynamic process. The feasibility and effectiveness of the proposed method on dynamic process modeling were validated by a case study of a chemical process.
出处 《化工学报》 EI CAS CSCD 北大核心 2016年第10期4317-4323,共7页 CIESC Journal
基金 国家自然科学基金项目(61503204) 浙江省自然科学基金项目(Y16F030001) 浙江省公益技术研究项目(2015C31017) 浙江省信息与通信工程重中之重学科开放基金项目(XKXL1526)~~
关键词 主元分析 过程系统 互信息 故障检测 统计过程监测 principal component analysis process systems mutual information fault detection statistical process monitoring
  • 相关文献

参考文献3

二级参考文献46

  • 1赵忠盖,刘飞.因子分析及其在过程监控中的应用[J].化工学报,2007,58(4):970-974. 被引量:24
  • 2Zhou Donghua (周东华), Li Gang (李钢), Li Yuan (李元). Data Driven Industrial Process Fault Diagnosis Technology Based on Principal Component Analysis and Partial Least Squares (数据驱动的工业过程故障诊断技术: 基于主成分分析与偏最小二乘的方法) [M]. Beijing: Science Press, 2011:1-9.
  • 3Yin S, Ding S X, Haghani A, et al. A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process [J]. Journal of Process Control, 2012, 22 (9): 1567-1581.
  • 4Alcala C F, Joe Qin S. Analysis and generalization of fault diagnosis methods for process monitoring [J]. Journal of Process Control, 2011, 21 (3): 322-330.
  • 5Zhang M, Ge Z, Song Z, et al. Global-local structure analysis model and its application for fault detection and identification [J]. Industrial & Engineering Chemistry Research, 2011, 50 (11): 6837-6848.
  • 6Garcia-Alvarez D, Fuente M J, Sainz G I. Fault detection and isolation in transient states using principal component analysis [J]. Journal of Process Control, 2012, 22 (3): 551-563.
  • 7Tong C, Yan X. Statistical process monitoring based on a multi-manifold projection algorithm [J]. Chemometrics and Intelligent Laboratory Systems, 2014, 130: 20-28.
  • 8Sprekeler H. On the relation of slow feature analysis and laplacian eigenmaps [J]. Neural Computation, 2011, 23 (12): 3287-3302.
  • 9Wong W K, Zhao H T. Supervised optimal locality multi-manifold projection algorithm [J]. Chemometrics and Intelligent Laboratory Systems, 2014, 130: 20-28.
  • 10Yu J. Local and global principal component analysis for process monitoring [J]. Journal of Process Control, 2012, 22 (7): 1358-1373.

共引文献68

同被引文献226

引证文献33

二级引证文献132

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部