期刊文献+

基于显著性图像边缘的全参考图像质量评价 被引量:16

Full reference image quality assessment based on the edge of saliency image
下载PDF
导出
摘要 大部分图像质量评价算法仅研究图像的灰度值及信息内容,没有充分考虑人眼视觉特性对图像质量评价的影响,针对此问题提出了一种基于显著性图像边缘的全参考图像质量评价方法。利用显著性图像表征图像的视觉关注内容,然后提取显著性图像的边缘检测图,得到人眼关注的结构和边缘,最后计算参考图像与失真图像边缘检测图之间的汉明距离得到图像质量评价指标。实验结果表明本文提出的评价指标满足人眼视觉特性,对于各种失真类型有非常高的主观一致性,评价性能也优于很多其他指标。 Most of the image quality assessment algorithms, which only study the image gray value and the content of information , have not been fully taken into account the effect of the human visual system in the assessment of image quality. To solve this problem, a full reference image quality evaluation method based on the saliency image edge is proposed. Using the saliency image to represent the visual attention of the image, the salient image edge detection map is extracted to get the structure and the edge, and the Hamming distance of the edge detection map between the reference image and the distortion image edge is calculated to achieve the image quality assessment index. Experimental results show that the proposed assessment index can satisfy the human visual characteristics, and a very high subjective consistency can be realized for all kinds of distortion types. The performance of the proposed method is also superior to other indices.
作者 闫钧华 朱可 张婉怡 汪竟成 肖勇旗 Yan Junhua Zhu Ke Zhang Wanyi Wang Jingcheng Xiao Yongqi(College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2016年第9期2140-2148,共9页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(61471194) 航空电子系统综合技术重点实验室和航空科学基金(20155552050) 国家留学基金 中国航天科技集团公司航天科技创新基金项目资助
关键词 图像质量评价 人眼视觉系统 显著性图像 边缘提取 全参考 image quality assessment human visual system saliency image edge extracting full reference
  • 相关文献

参考文献3

二级参考文献58

  • 1杨春玲,陈冠豪,谢胜利.基于梯度信息的图像质量评判方法的研究[J].电子学报,2007,35(7):1313-1317. 被引量:62
  • 2WANG Z,BOVIK A C, SHEIKH H R, et al. Image quality assessment: From error visibility to structural sim- ilarity[ J ]. IEEE Trans. hnage Process,2004, 13 (4) : 600-612.
  • 3EGIAZARIAN K, ASTOLA J, PONOMARENKO N, et al. New full-reference quality metrics based on HVS [C]. CD-ROM Proceedings of the Second International Workshop on Video Processing and Quality Metrics, Scottsdale, USA, 2006.
  • 4DAMERA-VENKATA N, KITE T D, GEISLE W S R, et al. Image quality assessment based on a degradation mod- el[J]. IEEE Trans. Image Process, 2000, 9 (4): 636-650.
  • 5CHANDLER D M, HEMAMI S S. VSNR: A wavelet- based visual signal-to-noise ratio for natural images ~ J ]. IEEE Trans. Image Process, 2007,16 (9) :2284-2298.
  • 6SHEIKH H R, BOVIK A C. Image information and visu- al quality [ J]. IEEE Trans. Image Process, 2006, 15 (2) :1430-444.
  • 7WANG Z, SIMONCELLI E P, BOVIK A C. Multi-scale structural similarity for image quality assessment [ C ]. IEEE Asilomar Conf. Signals, Systems and Computers, 2003.
  • 8LI C, BOVIK A C. Three-component weighted structural similarity index [ C ]. Proc. SPIE, 2009,7242 : 1-9.
  • 9SHEIKH H R, BOVIK A C, DE VECIANA G. An infor- mation fidelity criterion for image quality assessment using natural scene statistics[J]. IEEE Trans. Image Process, 2005, 14(12): 2117-2128.
  • 10SHEIKH H R, SABIR M F, BOVIK A C. A statistical evaluation of recent full reference image quality assess- ment algorithms[ J ]. IEEE Trans. Image Process,2006, 15( 11 ) :3440-3451.

共引文献55

同被引文献112

引证文献16

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部