摘要
Bionic jumping robot can cross the obstacles by jumping, and it has a good application prospect in the unstructured com- plex environment. The less Degree of Freedom (DOF) jumping leg, which has the characteristics of simple control and high rigidity, and is very important in research. Based on the experimental observation of leg physiological structure and take-off process of locust, two 1 DOF jumping leg models, which includes four-bar jumping leg model and slider-crank jumping leg model, are established, and multi objective optimization is conducted to deduce the motion law of two 1 DOF jumping leg models and jumping leg of locust is closer. Then the jumping performance evaluation indices are proposed, which include the mechanical property, body attitude, jumping distance and jumping performances of the two jumping leg models environmental effect. According to these evaluation indices, the are analyzed and compared, and the simulation is conducted for further explanations. The analysis results show that the four-bar jumping leg has smaller structural size and its motion law is closer to the hindleg of locust. The slider-crank jumping leg has better mechanical property, stronger energy storage capacity and the rough ground has less effect on it. This study offers a quantitative analysis and comparison for different jumping leg models of bionic locust jumping robot. Furthermore, a theoretical basis for future research and engineering application is established.
Bionic jumping robot can cross the obstacles by jumping, and it has a good application prospect in the unstructured com- plex environment. The less Degree of Freedom (DOF) jumping leg, which has the characteristics of simple control and high rigidity, and is very important in research. Based on the experimental observation of leg physiological structure and take-off process of locust, two 1 DOF jumping leg models, which includes four-bar jumping leg model and slider-crank jumping leg model, are established, and multi objective optimization is conducted to deduce the motion law of two 1 DOF jumping leg models and jumping leg of locust is closer. Then the jumping performance evaluation indices are proposed, which include the mechanical property, body attitude, jumping distance and jumping performances of the two jumping leg models environmental effect. According to these evaluation indices, the are analyzed and compared, and the simulation is conducted for further explanations. The analysis results show that the four-bar jumping leg has smaller structural size and its motion law is closer to the hindleg of locust. The slider-crank jumping leg has better mechanical property, stronger energy storage capacity and the rough ground has less effect on it. This study offers a quantitative analysis and comparison for different jumping leg models of bionic locust jumping robot. Furthermore, a theoretical basis for future research and engineering application is established.
基金
the National Natural Science Foundation of China (Grant No. 51375035), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20121102110021).