摘要
生态位模型在入侵生物学和保护生物学中具有广泛的应用,其中Maxent模型最为流行,被越来越多地应用在预测物种的现实分布和潜在分布的研究中。在Maxent模型中,多数研究者采用默认参数来构建模型,这些默认参数源自早期对266个物种的测试,以预测物种的现实分布为目的。近期研究发现,Maxent模型采用复杂机械学习算法,对采样偏差敏感,易产生过度拟合,模型转移能力仅在低阈值情况下较好。基于默认参数的Maxent模型不仅预测结果不可靠,而且有时很难解释。在本研究中,作者以入侵害虫茶翅蝽(Halyomorpha halys)为例,采用经典模型构建方案(即构建本土模型然后将其转移至入侵地来评估),利用ENMeval数据包来调整本土Maxent模型调控倍频和特征组合参数,分析各种参数条件下模型的复杂度,然后选取最低复杂度的模型参数(即为最优模型),综合比较默认参数和调整参数后Maxent模型的响应曲线和预测结果,探讨Maxent模型复杂度对预测结果的影响及Maxent模型构建时所需注意事项,以期对物种潜在分布进行合理的预测,促进Maxent模型在我国的合理运用和发展。作者认为,环境变量的选择至关重要,需要综合分析其对所模拟物种分布的限制作用和环境变量之间的空间相关性。构建Maxent模型前需对物种分布采样偏差及模型的构建区域进行合理地判断,模型构建时需要比较不同参数下模型的预测结果和响应曲线,选取复杂度较低的模型参数来最终建模。在茶翅蝽的分析中,Maxent模型的默认参数和最优模型参数不同,与Maxent模型默认参数相比,采用调整参数后所构建的模型预测效果较好,响应曲线较为平滑,模型转移能力较高,能够较为合理反映物种对环境因子的响应和准确地模拟该物种的潜在分布。
Ecological niche modeling (ENM) is widely used in the study of biological invasions and conser- vation biology. Maxent is the most popular algorithm and is being increasingly used to estimate species' re- alized and potential distributions. Most modelers use the default Maxent setting to fit niche models, which originated from an earlier study containing 266 species, with the purpose of seeking their realized distribu- tions. However, recent studies have shown that Maxent uses a complex machine learning method. It is sensi- tive to sampling bias and tends to overfit training data, and is only transferrable at low thresholds. Default settings based on Maxent outputs are sometimes not reliable, making it difficult to interpret. Using Halyo- morpha halys and classical modeling approaches (i.e., niche models that were calibrated in native East Asia and transferred to North America), we tested the complexity and performance of the Maxent model under different settings of regulation multipliers and feature combinations, and chose a fine-tuned setting with the lowest complexity. We then compared the response curves and model interpolative and extrapolative valida-tions between models calibrated using default and fine-tuned settings. Our purpose was to explore the effects of the model's complexity on niche model performance in order to improve the development and application of Maxent in China. We argue that selection of environmental variables is crucial for model calibration, which should include ecological relevance and spatial correlation. Reducing sampling bias and delimitating a proper geographic background, together with the comparison of response curves and complexity of Maxent models built under different settings, is very important for fitting a good niche model. In the case of H, halys, the default and fine-tuned settings are different, however the response curve is much smoother in the fi- ne-tuned model, and the omission error is lower in introduced areas when compared to default model, sug- gesting that the fine-tuned model reflects the response of H. halys to environmental factors more reasonably and precisely predicts the potential distribution.
出处
《生物多样性》
CAS
CSCD
北大核心
2016年第10期1189-1196,共8页
Biodiversity Science
基金
国家自然科学基金(31401962)
天津师范大学人才引进基金项目(5RL127)
天津市131创新人才培养工程项目(ZX110204)
天津市用三年时间引进千名以上高层次人才项目(5KQM110030)