期刊文献+

基于信道状态信息的人体行为识别系统 被引量:4

Human Activity Recognition System Using Channel State Information of Wi-Fi Signals
原文传递
导出
摘要 提出了一种基于无设备的人体行为识别系统,利用Wi-Fi信号的信道状态信息(CSI)来识别3个动态活动:行走、摔倒和坐。该系统只需要一台Wi-Fi路由器作为发射器和一台装有无线网卡的笔记本电脑作为接收器。系统从WiFi信号中提取CSI,然后经过低通滤波以消除噪声,并且为了降低CSI的维度和避免周围噪声所带来的不良影响,在整个CSI数据流中采用了主成分分析(PCA)算法。因此,该系统能够从CSI的时域和频域中得到有用的信号特征值。继而,采用支持向量机(SVM)算法来对人体行为进行分类。为了评优系统的可用性和稳定性,跟5个用户在动态环境中,分别在视距(LOS)和非视距(NLOS)的条件下做了大量的实验,这些实验表明该系统能够得到较高的准确率。 This paper presented a device-free human activity recognition system by using the channel state information (CSI) of Wi-Fi signals, which recognizes three dynamic activities: walk, fall ,and sit. The proposed system required only a Wi-Fi router as a transmitter and a laptop as a receiver. We extracted CSI from Wi-Fi signals and then applied low-pass filter to remove the noise. We applied the Principle Component Analysis (PCA) algorithm across CSI streams to reduce CSI dimensiona[ity and to avoid bad information, which may occurs due to the surrounding noise. Thereafter, we extracted the useful features from time and frequency domain of CSI. Then, we adopted support vector machine to classify the proposed human activity. To examine the feasibility and performance of the proposed system, we implemented hundreds of experiments in Line of sight (LOS) and Non Line of sight (NLOS) seenarios in a dynamic environment with a total of five volunteer users. The experiment results show that our system has gained a high-accuracy rate in both LOS and NLOS.
出处 《武汉理工大学学报》 CAS 北大核心 2016年第4期76-80,共5页 Journal of Wuhan University of Technology
基金 国家自然科学基金面上项目(61373042)和国家自然科学基金青年基金(61502361)
关键词 人体行为识别 信道状态信息 无设备 WI-FI human activity recognition CSI device-free Wi-Fi
  • 引文网络
  • 相关文献

参考文献12

  • 1Gaglio S,Re G L, Morana M. Human Activity Recognition Process Using 3-D Posture Data[J]. IEEE Transactions on Human-Machine Systems,2015,45(5) :586-597.
  • 2Field M,Stirling D, Pan Z, et al. Recognizing Human Motions Through Mixture Modeling of Inertial Data[J]. Pattern Recognition, 2015,48(8) :2394-2406.
  • 3Kwon Y,Kang K,Bae C. Unsupervised Learning for Human Activity Recognition Using Smartphone Sensors[J]. Expert Systems with Applications,2014,41(14) ..6067-6074.
  • 4Ass Youssef M, Mah M, Agrawala A. Challenges: Device-free Passive I.ocalization for Wireless Environments[C]//Pro- ceedings of the 13th Annual ACM Internatiomd Conference on Mobile Computing and Networking. [s. 1. ]: ACM, 2007: 222-229.
  • 5Zhao Y,Patwari N. Robust Estimators for Variance-based Device-free Localization and Tracking[J]. IEEE Transactions on Mobile Computing,2011,14(10) :2116-2129.
  • 6Sigg S,Scholz M,Shi S,et al. Rf-sensing of Activities from Non-cooperative Subjects in Device-free Recognition Systems Using Ambient and Local Signals[J]. IEEE Transactions on Mobile Computing, 2014,13 (4) : 907-920.
  • 7Xiao J, Wu K, Yi Y, et al. FIFS, Fine-grained Indoor Fingerprinting System[C]//2012 21st International Conference on Computer Communications and Networks (ICCCN). [ s. 1.] : IEEE, 2012 : 1- 7.
  • 8Zeng Y, Pathak P H,Xu C, et al. Your Ap Knows How You Move:Fine-grained Device Motion Recognition Through Wifi [C]//Proceedings of the Lst ACM Workshop on Hot Topics in Wireless. [s. 1. ] ..ACM,2014..49-54.
  • 9Wei B, Hu W,Yang M,et al. Radio-based Device-free Activity Recognition with Radio Frequency Interferenee[C]//Pro- ceedings of the 14th International Conference on Information Processing in Sensor Networks. Is. 1. ] : ACM, 2015 154- 165.
  • 10杨铮,刘云浩.wi-Fi雷达:从RSSI到CSI[J].中国计算机学会通讯,2014,10(11):55-60.

同被引文献23

引证文献4

二级引证文献14

;
使用帮助 返回顶部