期刊文献+

文氏桥振荡器的簇发现象分析及实验验证 被引量:4

Bursting Phenomenon Analyses and Experimental Validation in Wien-bridge Oscillator
下载PDF
导出
摘要 本文采用一对二极管将无源LC滤波器非线性耦合到文氏桥振荡器的并联桥臂替换电阻,实现了一种新颖的文氏桥振荡器;建立了该电路的动力学模型,开展了动力学行为分析。结果表明:文氏桥振荡器在给定的参数域内具有快慢效应。进一步研究了混沌簇发和周期簇发现象。本文研制了实验电路,该实验电路结构简单、易物理实现,实验测量和数值仿真两者结果一致,证明了理论分析的有效性。 Replacing the parallel resistor with a passive LC filter and nonlinear coupling by a diode pair to the par- allel bridge arm of classical Wien-bridge oscillator, a novel Wien-bridge oscillator is implemented. The dynamical model is established, upon which the dynamical behavior is performed. The results show that the fast-slow effect existing in the system under given parameter region. Furthermore, the dynamics for chaotic and period bursting phenomena are explained. A hardware realization circuit is built, the experimental circuit has simple structure and is easy to physical manufacture, and the experimental measurements and numerical simulations are consistent, veri- fying the validity of the theoretical analyses.
出处 《电气电子教学学报》 2016年第5期46-49,共4页 Journal of Electrical and Electronic Education
关键词 周期簇发振荡 混沌簇发振荡 文氏桥振荡器 periodic bursting oscillate chaotic bursting oscillate Wien-bridge oscillator
  • 引文网络
  • 相关文献

参考文献2

二级参考文献34

  • 1Lee I, Kim S and Jun S 2004 Comput. Methods Appl. Mech. Enger. 193 1633.
  • 2Hu G, Wang Y, Schoneich C, Jiang P and Fessenden R 1999 Radiation Phys. Chem. 54 559.
  • 3Rajesh S and Ananthakrishna G 2000 Phys. Rev. E 61 3664.
  • 4Yang Z Q and Lu Q S 2006 Chin. Phys. 15 518.
  • 5Dai X G, Li H Q and Luo X H 2008 Acta Phys. Sin. 57 7511 (in Chinese).
  • 6Han X J, Jiang B and Bi Q S 2009 Acta Phys. Sin. 58 4408 (in Chinese).
  • 7Cui B T, Ji Y and Qiu F 2009 Chin. Phys. B 18 5203.
  • 8Izhikevich E 2000 Int. J. Bifur. Chaos 6 1171.
  • 9Maeda Y and Makino H 2000 BioSystems 58 93.
  • 10Savino G V and Formigli C M 2009 BioSystems 97 9.

共引文献4

同被引文献22

引证文献4

二级引证文献4

;
使用帮助 返回顶部