期刊文献+

时序约束NPE算法在化工过程故障检测中的应用 被引量:19

Time constrained NPE for fault detection in chemical processes
下载PDF
导出
摘要 针对动态过程的故障检测问题,在邻域保持嵌入算法中改进邻域挑选,提出一种新的维度约简方法:时序约束邻域保持嵌入(time constrained neighborhood preserving embedding,TCNPE)算法。与邻域保持嵌入(neighborhood preserving embedding,NPE)算法只通过欧氏距离挑选邻域不同的是,TCNPE考虑到数据之间的时序相关性,在一定长度的时间窗之内采用k-近邻方法挑选邻域,并对时间窗内近邻与非近邻构造局部约束关系。首先,利用TCNPE提取数据特征,进行线性降维,然后构造T^2和SPE统计量并利用密度估计(kernel density estimation,KDE)确定其控制限。最后,通过数值例子和TE过程(Tennessee-Eastman process)仿真来说明本文方法的有效性。 For fault detection in dynamic processes, a novel dimensionality reduction method was proposed on the basis of improved neighbor selection in neighborhood preserving embedding algorithm, i.e., time constrained neighborhood preserving embedding(TCNPE). Compared to neighborhood preserving embedding(NPE), which selected neighborhood only by Euclidean distance, TCNPE selected neighborhoods within certain timeframe by k-nearest neighboring method with a consideration of time series correlation between data points and constructed a localized constraining relationship between near and distant neighborhoods within this time window. First, TCNPE algorithm extracted main features of the process data and performed linear dimensionality reduction. Next, Hotelling's T2 and SPE statistics were established for online process monitoring and kernel density estimation(KDE) was used to determine control limits. Case study and simulation of Tennessee-Eastman Process demonstrated efficacy of the proposed method.
出处 《化工学报》 EI CAS CSCD 北大核心 2016年第12期5131-5139,共9页 CIESC Journal
基金 国家自然科学基金项目(61374140) 国家自然科学基金青年科学基金项目(61403072)~~
关键词 过程控制 动态建模 邻域保持嵌入 线性降维 故障检测 实验验证 process control dynamic modeling neighborhood preserving embedding linear dimensionality reduction fault detection experimental validation
  • 相关文献

参考文献5

二级参考文献60

  • 1汪志锋,袁景淇.Online Supervision of Penicillin Cultivations Based on Rolling MPCA[J].Chinese Journal of Chemical Engineering,2007,15(1):92-96. 被引量:9
  • 2赵忠盖,刘飞.因子分析及其在过程监控中的应用[J].化工学报,2007,58(4):970-974. 被引量:24
  • 3Chiang L H, Russell E L, Braatz R D. Fault Detection and Diagnosis in Industrial Systems. London: Springer- Verlag, 2001
  • 4Kim D, Lee I B. Process monitoring based on probabilistic PCA. Chemometrics and Intelligent Laboratory Systems, 2003, 67:109-123
  • 5Hyvarinen A, Oja E. Independent component analysis: algorithms and applications. Neural Network, 2000, 13: 411-430
  • 6Kano M, Tanaka S, Hasebe S, Hashimoto I, Ohno H. Monitoring independent components for fault detection. AIChEJournal, 2003, 49 (4): 969-976
  • 7Xie L, Wu J. Gobal optimal ICA and its application in MEG data analysis. Neurocomputing, 2006, 69:2438-2442
  • 8He Ning(何宁).Research on performance monitoring and fault diagnosis for process industry based on ICA PCA method[D]. Hangzhou: Zhejiang University, 2004: 31-54
  • 9Hyvarinen A. A fast fixed point algorithm for independent component analysis. Neural Computation, 1997, 9:1483-1492
  • 10Chen Q, Kruger U, Andrew T Y Leung. Regularised kernel density estimation for clustered process data. Control Engineering Practice, 2004, 12:267-274

共引文献40

同被引文献137

引证文献19

二级引证文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部