期刊文献+

风力发电机塔筒结构在坡地上的风压数值模拟 被引量:1

Numerical Simulation of Wind Pressure on the Wind Turbine to Werstructure on the Sloping Field
下载PDF
导出
摘要 为了研究当风流经时不同地形对风力发电机塔筒的影响,以内蒙古白云鄂博地区的锥形塔筒风力发电机为研究对象,利用ANSYS有限元软件建立了塔筒分别位于坡度为15°、30°、45°山坡上的模型,通过分析风流经山坡时塔筒周围的风压系数分布情况推导出了风压值在平地与山区之间以及不同坡度山坡之间的关系,得到了锥型塔筒结构周围流场的变化特征和爬坡增值系数的建议取值。分析表明,风压和风速会随坡度增加而增大,且塔筒表面风压系数在迎风面分布较密在背风面分布较疏,并在0°位置处出现最大正风压系数,在侧面90°和270°位置处出现最小负风压系数。本文研究结果可为今后在不同地貌上风力发电机的设计与研究提供参考。 In order to study the influence of different terrain on wind power generator when wind come through, and take the wind power generators of Baiyunebo, in Inner Mongolia, as study object. The models of the wind turbine tower on the slopes of 15°,30°,45° are established by ANSYS finite element software, the relationship of wind pressure value between plains and mountains is deduced by the distribution of wind pressure coefficient around the tower when winds come through, the characteristics of the flow field around the tower and the recommended value of climbing increment coefficient are obtained. By analysis, wind pressure and wind speed will increase with the increase of slope, and on the surface of the tower, the wind pressure coefficients distribution in the windward side is more dense than the leeward side, the maximum positive pressure coefficients locate in the 0° position, and the minimum negative wind pressure coefficient locate in the 90°and 270° positions on the side. The research results will provide a reference for the design of the wind power generator on different landforms.
出处 《土木工程与管理学报》 北大核心 2016年第6期6-11,共6页 Journal of Civil Engineering and Management
基金 国家自然科学基金(51068021)
关键词 风力发电机塔筒 地形地貌 风压系数 爬坡增值系数 数值模拟 wind turbine tower topography wind pressure coefficient climbing increment coefficient numerical simulation
  • 相关文献

参考文献3

二级参考文献26

  • 1Tamura Y.Simultaneous measurements of wind speed profiles at two sites using Doppler sodars[J].Journal of Wind Engineering and In-dustrial Aerodynamics,2001,89:325-335.
  • 2Farell C.Experiments on the wind tunnel simulation of atmospheric boundary layers[J].Journal of Wind Engineering and Industrial Aero-dynamics,1999,79:11-35.
  • 3Cao S.Experimental study on roughness effects on turbulent boundary layer flow over a two-dimensional steep hill[J].Journal of Wind Engineering and Industrial Aerodynamics,2006,94:1-19.
  • 4Takahash T.Wind tunnel tests of effects of atmospheric stability on turbulent flow over a three-dimensional hill[J].Journal of Wind Engineering and Industrial Aerodynamics,2005,93:155-169.
  • 5Chock G Y K.Modeling of topographic wind speed effects in Hawaii[J].Journal of Wind Engineering and Industrial Aerodynamics,2005,93:623-638.
  • 6Bowen A J.Modelling of strong wind flows over complex terrain at small geometric scales[J].Journal of Wind Engineering and Industrial Aerodynamics,2003,91:1859-1871.
  • 7Cheng E.Kinematic flow model based extreme wind simulation[J].Journal of Wind Engineering and Industrial Aerodynamics,1998,77-78:1-11.
  • 8Jackson P S, Hunt J C R. Turbulent wind flow over a low hill [J]. Quarterly Journal of the Royal Meteorological Society, 1975, 101: 929-955.
  • 9Jackson P S. The influence of local terrain features on the site selection for wind energy generating systems [R]. Boundary Layer Wind Tunnel Laboratory Internal Report, University of Western Ontario, BLWT-1-1979, 1979.
  • 10Hunt J C R, Leibovich S, Richards K J. Turbulent shear flow over low hills [J]. Quarterly Journal of the Royal Meteorological Society, 1988, 114: 1435-1470.

共引文献46

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部