摘要
针对传统基于几何特征的运动目标分类识别方法在模式类预定义、特征提取利用和分类器判定策略上的一些细节处理不足,提出一种改进方法。依据目标外轮廓形态差异程度,在模式类下定义子模式类;利用提取出目标的高维度几何特征向量,通过伪划分方式分组得到若干子特征向量,多方面描述目标;通过分类器和子特征向量组计算的结果,利用综合判定机制,得到最终的分类识别结果。利用目标类别的平均识别率指标进行实验,实验结果表明,该方法对预定义的4个模式类有较好效果。
Aiming at some shortcomings about pattern class pre-definition,feature extraction utilization and classifier decision strategy using the traditional methods of moving object classification and recognition based on geometrical features,an improved method was proposed.The sub pattern classes were defined from pattern classes depending on external contours morphological differences of objects.High dimensional geometry feature vector of object and some sub feature vectors were obtained through pseudo division,thus,the object was described in many ways.The final result of classification and recognition was figured out through the results of classifier and sub feature vectors and comprehensive decision rules.The average recognition rates of object classes were used to do the experiment.Results show that this method has excellent recognition rates in four predefined patterns.
出处
《计算机工程与设计》
北大核心
2016年第12期3378-3383,共6页
Computer Engineering and Design
基金
四川省教育厅重点基金项目(15zd1107)
国家级大学生创新性创业训练计划基金项目(201310619021)
关键词
运动目标分类识别
几何特征
特征分组
综合判定
最小错分贝叶斯方法
子模式类
moving objects classification and recognition
geometrical features
feature grouping
comprehensive decision
min-error Bayes method
sub pattern class