期刊文献+

自适应卡尔曼滤波在磁干扰姿态测量中的应用 被引量:1

The Application of Adaptive Kalman Filter to the Orientation Estimation of Magnetic Interference
下载PDF
导出
摘要 针对姿态测量系统陀螺仪漂移、周围局部磁场干扰制约姿态测量精度的问题,提出一种基于四元数的自适应卡尔曼滤波(q-AKF)的方法。该方法利用陀螺输出建立姿态解算误差角的状态方程,以磁强计输出构造自适应测量噪声协方差矩阵。仿真结果表明,相比无损卡尔曼滤波(UKF)算法和扩展卡尔曼滤波(EKF)算法,采用q-AKF算法补偿得到的姿态角误差不大于0.5°。q-AKF算法对磁强计进行补偿,能够有效抑制陀螺的漂移误差,提高磁干扰环境下姿态解算精度,具有较高的工程应用价值。 Aiming at the problem that the accuracy of the orientation estimation is affected by the gyroscope bias error in the orientation estimation system and the interference from surrounding local magnetic disturbances, a quaternion-based adaptive Kalman filter (q-AKF) algorithm is proposed in this paper. The algorithm utilizes the gyroscope outputs to establish the state equation of attitude error angle and construct the adaptive measurement noise covariance matrix with the outputs of the magnetometer. The simulation results show that the attitude error angle obtained by the q-AKF is less than 0.5°compared with the UKF algorithm and the EKF algorithm. Using the q-AKF algorithm to compensate the magnetometer can effectively suppress the gyro bias error, improve the precision of attitude algorithm in magnetic interference environment, which has high engineering application value.
出处 《压电与声光》 CAS CSCD 北大核心 2016年第6期974-978,共5页 Piezoelectrics & Acoustooptics
基金 国家自然科学基金项目资助(51175535) MEMS振动传感与微姿态组合测井技术国际联合研究中心科技平台与基地建设基金资助项目(cstc2014gjhz0038)
关键词 四元数 自适应卡尔曼滤波 磁强计 姿态测量 抗磁干扰 quaternion adaptive Kalman filtering magnetometer orientation estimation anti-magnetic interference
  • 相关文献

参考文献1

二级参考文献9

  • 1戴海峰,魏学哲,孙泽昌.基于扩展卡尔曼滤波算法的燃料电池车用锂离子动力电池荷电状态估计[J].机械工程学报,2007,43(2):92-95. 被引量:45
  • 2夏超英,张术,孙宏涛.基于推广卡尔曼滤波算法的SOC估算策略[J].电源技术,2007,31(5):414-417. 被引量:52
  • 3Zhu C B,Coleman M,Hurley W G. State of charge deter- mination in a lead-acid battery:combined EMF estimation and Ah-balance approach [ C ]//Power Electronics Spe- cialists Conference. [ S. 1. ] ,IEEE ,2004 : 1908 - 1914.
  • 4Plett G. Extended Kalman fihering for battery manage- ment systems of LiPB-based HEV battery packs Partl. Background [ J ]. Journal Of Power Sources, 2004, 134 (2) :252 -261.
  • 5Plett G. Extended Kalman filtering for battery manage- ment systems of LiPB-based HEV battery packs Part2. Modeling and identification [ J ]. Journal Of Power Sources,2004,134(2) :262 - 276.
  • 6Sun F, Hu X, Zou Y, et al. Adaptive unscented Kalman filtering for state of charge estimation of a lithiumion bat- tery for electric vehicles [ J ]. Energy, 2011,36 (5) : 3531 - 3540.
  • 7Plett G L. Sigma-point Kalman filtering for battery man- agement systems of LiPB-base HEV battery packs Partl : Introduction and state estimation [ J ]. Journal of power Sources ,2006,161 : 1356 - 1368.
  • 8Plett G L. Sigma-point Kalman filtering for battery man- agement systems of LiPB-base HEV battery packs Part2: Introduction and state estimation [ J ], 2006, 161 : 1356 - 1368.
  • 9陈艳,赵明富,兴仁龙,钟连超,崔金林.基于SVM的蓄电池容量智能在线检测技术研究[J].压电与声光,2008,30(3):304-307. 被引量:2

共引文献6

同被引文献14

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部