摘要
The wetlands on the Zoige Plateau have experienced serious degradation,with most of the original marsh being converted to marsh meadow or meadow.Based on the 3 wetland degradation stages,we determined the effects of wetland degradation on the structure and relative abundance of nitrogencycling(nitrogen-fixing,ammonia-oxidizing,and denitrifying) microbial communities in 3 soil types(intact wetland:marsh soil;early degrading wetland:marsh meadow soil;and degraded wetland:meadow soil) using 454-pyrosequencing.The structure and relative abundance of nitrogen-cycling microbial communities differed in the 3 soil types.Proteobacteria was the predominant phylum in most soil samples but the most abundant soil nitrogenfixing and denitrifying microbial bacteria differed at the class,order,family,and genus levels among the 3soil types.At the genus level,the majority of nitrogenfixing bacterium sequences related to Bradyrhizobium were from marsh and marsh meadow soils;whereas those related to Geobacter originated from meadow soil.The majority of ammonia-oxidizing bacterium sequences related to Nitrosospira were from marsh(except for the 40-60 cm layer),marsh meadow and meadow soils;whereas those related to Candidatus Solibacter originated from 40-60 cm layer of marsh soil.The majority of denitrifying bacterium sequences related to Candidatus Solibacter and Anaeromyxobacter were from marsh and meadow soils;whereas those related to Herbaspirillum originated from meadow soil.The distribution of operational taxonomic units(OTUs)and species were correlated with soil type based upon Venn and Principal Coordinates Analysis(PCoA).Changes in soil type,caused by different water regimes were the most important factors influencing compositional changes in the nitrogen-fixing,ammonia-oxidizing,and denitrifying microbial communities.
作者
WU Li-sha
NIE Yuan-yang
YANG Zhi-rong
ZHANG Jie
WU Li-sha;NIE Yuan-yang;YANG Zhi-rong;ZHANG Jie(Key Laboratory of Biological Resource and Ecological Environment of the Ministry of Education,College of Life Sciences,Sichuan University;College of Medical Technology,Chengdu University of Traditional Chinese Medicine)
基金
financially supported by the 11th Five Years Key Programs for Science and Technology Development of China (Grant No.2007BAC18B03)