期刊文献+

一种基于多极化散射机理的极化SAR图像舰船目标检测方法 被引量:8

Pol SAR Ship Detection Method Based on Multiple Polarimetric Scattering Mechanisms
下载PDF
导出
摘要 针对基于单一极化特性增强的极化SAR图像目标检测方法的缺陷,该文将DP(Dirichlet Process)混合隐变量SVM模型(DPLVSVM)应用于极化SAR图像舰船目标检测,提出一种基于多极化散射机理的检测方法。该方法通过联合Dirichlet过程混合与Bayes SVM模型,将信号空间划分成若干局部区域,然后在每一局部区域学习一个独立的极化检测器,并将各局部检测器进行组合实现全局多极化散射机理的目标检测。模型采用非参数化Bayes方法自动确定局部区域数量,在完全Bayes框架下,将局部区域划分及检测器学习进行联合优化,保证了各局部区域样本的可分性。另外,为了降低极化特征冗余,该文进一步提出带特征选择功能的稀疏提升DP混合隐变量SVM模型(SPDPLVSVM),提高模型的推广能力。该模型由于采用共轭先验分布,因而可以利用Gibbs采样方法进行高效求解。在RADARSAT-2数据上进行的实验验证了所提方法的有效性。 Considering the shortcoming of detection method based on polarimetric contrast enhanced with single polarimetric scattering mechanism, a PolSAR detection method based on multiple polarimetric mechanisms called Dirichlet Process mixture of Latent Variable SVM (DPLVSVM) is proposed. By assembling a set of local polarimetric detectors that based on single polarimetric scattering mechanism, a global multiple polarimetric scattering mechanisms detector is obtained. With a fully Bayes treatment, DPLVSVM learns the clustering and the local detectors jointly. Taking the advantage of Bayes nonparametric, DPLVSVM handles the model selection problem flexibly. Further, in order to reduce the redundancy of polarimetric feature and improve the model generalization, a model with feature selection, Sparsity-Promoting Dirichlet Process mixture of Latent Variable SVM (SPDPLVSVM), is proposed. Thanks to the conjugate property, the parameters in both of models can be inferred efficiently via the Gibbs sampler. Finally, the proposed models on RADARSAR-2 dataset is implemented to validate their effectiveness.
出处 《电子与信息学报》 EI CSCD 北大核心 2017年第1期103-109,共7页 Journal of Electronics & Information Technology
基金 国家杰出青年科学基金(61525105) 国家自然科学基金(61201292 61322103 61372132) 全国优秀博士学位论文作者专项资金(FANEDD-201156) 陕西省自然科学基础研究计划(2016JQ-6048) 航空科学基金(20142081009) 航空电子系统射频综合方针航空科技重点实验室基金 上海航天科技创新基金(SAST-2015009)~~
关键词 极化SAR 目标检测 Dirichlet过程混合模型 BAYES SVM 特征选择 Polarimetric SAR Target detection Dirichlet process mixture model Bayes SVM Feature selection
  • 相关文献

参考文献8

二级参考文献136

  • 1吴永辉,计科峰,郁文贤.利用SVM的全极化、双极化与单极化SAR图像分类性能的比较[J].遥感学报,2008,12(1):46-53. 被引量:16
  • 2徐丰,金亚秋.目标散射的去取向理论和应用(一)去取向理论[J].电波科学学报,2006,21(1):6-15. 被引量:7
  • 3Wu Y, Liu K, Ji K, et al. Region-based Classification of Polarimetric SAR Images Using Wishart MRF[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(4): 668-672.
  • 4Yu P, Qin K, Clausi D A. Unsupervised Polar/metric SAR Image Segmentation and Classification Using Region Growing with Edge Penalty [J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(4): 1302-1317.
  • 5Cloude S R, Pottier E. An Entropy-based Classification Scheme for Land Application of Polarimetric SAR[J]. IEEE Transac- tions on Geoscience and Remote Sensing, 1997, 35(1): 68-78.
  • 6Freeman A, Durden S L. A Ihree-component Scattering Model for Polarimetric SAR Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(3): 963-973.
  • 7Lee J S, Grunes M R, Ainsworth T L, et al. Unsupervised Classification Using Polarimetric Decomposition and the Complex Wishart Classifier[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(5): 2249-2258.
  • 8Lee J S, Grunes M R, Pottier E. Unsupervised Terrain Classification Preserving Polarimetric Scattering Characteristics[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(4): 722-731.
  • 9Wang S, Liu K, Pei J, et al. Unsupervised Classification of Fully Polarimetric SAR Images Based on Scattering Power and Entropy and Copolarized Ratio[J].IEEE Geoscience and Remote Sensing Letters, 2013, 10(3): 622-626.
  • 10Lee J S, Grunes M R, Grandi G D. Polarimetric SAR Speckle Filtering and Its Implication for Classification[J]. IEEE Trans- actions on Geoscience and Remote Sensing, 1999, 37(5): 2363-2373.

共引文献31

同被引文献70

引证文献8

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部