期刊文献+

An investigation of a magnetic cataclysmic variable with a period of 14.1 ks

An investigation of a magnetic cataclysmic variable with a period of 14.1 ks
下载PDF
导出
摘要 Magnetic cataclysmic variables (CVs) contain a white dwarf (WD) with a magnetic field strong enough to control the accretion flow from a late type secondary. In this paper, we identify a magnetic CV (CXOGSG J215544.4+380116) from the Chandra archive data. The X-ray light curves show a significant period of 14.1 ks, and the X-ray spectra can be described by a multi-temperature hot thermal plasma, suggesting the source is a magnetic CV. The broad dip in the X-ray light curve is due to the eclipse of the primary magnetic pole, and the additional dip in the bright phase of the soft and medium bands may be caused by the accretion stream crossing our line of sight to the primary pole. Follow-up optical spectra show features of an M2-M4 dwarf dominating the red band and a WD which is responsible for the weak upturn in the blue band. The mass (~ 0.4 34⊙) and radius (~0.4 R⊙) for the M dwarf are obtained using CV evolution models and empirical relations between the orbital period and the mass/radius. The estimated low X-ray luminosity and accretion rate may suggest the source is a low-accretion-rate polar. In addition, Very Large Array observations reveal a possible radio counterpart to the X-ray source, but with a low significance. Further radio observations with high quality are needed to confirm the radio counterpart and explore the properties of this binary system. Magnetic cataclysmic variables (CVs) contain a white dwarf (WD) with a magnetic field strong enough to control the accretion flow from a late type secondary. In this paper, we identify a magnetic CV (CXOGSG J215544.4+380116) from the Chandra archive data. The X-ray light curves show a significant period of 14.1 ks, and the X-ray spectra can be described by a multi-temperature hot thermal plasma, suggesting the source is a magnetic CV. The broad dip in the X-ray light curve is due to the eclipse of the primary magnetic pole, and the additional dip in the bright phase of the soft and medium bands may be caused by the accretion stream crossing our line of sight to the primary pole. Follow-up optical spectra show features of an M2-M4 dwarf dominating the red band and a WD which is responsible for the weak upturn in the blue band. The mass (~ 0.4 34⊙) and radius (~0.4 R⊙) for the M dwarf are obtained using CV evolution models and empirical relations between the orbital period and the mass/radius. The estimated low X-ray luminosity and accretion rate may suggest the source is a low-accretion-rate polar. In addition, Very Large Array observations reveal a possible radio counterpart to the X-ray source, but with a low significance. Further radio observations with high quality are needed to confirm the radio counterpart and explore the properties of this binary system.
出处 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2017年第1期103-112,共10页 天文和天体物理学研究(英文版)
基金 the National Natural Science Foundation of China(Grant Nos.11273028 and 11333004) support from National Astronomical Observatories,Chinese Academy of Sciences under the Young Researcher Grant
关键词 novae cataclysmic variables - stars late-type - stars magnetic field novae, cataclysmic variables - stars late-type - stars magnetic field
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部