摘要
分块策略被广泛运用于全流程过程监控领域,以解决全流程过程变量关系复杂性较高的问题,但传统的分块策略与子块建模方法都未考虑过程的动态性问题,并且传统的分块策略都片面依赖于过程知识或过程数据信息,影响了过程监控的效果,为此提出了一种基于混合分块DMICA-PCA的过程监控方法。在分析过程的动态性后,先利用已知的部分过程知识进行变量的初步分块,接着利用各分块变量之间改进的广义Dice’s系数(MGDC)进行进一步的分块。然后采用DMICA-PCA方法对每个子块进行建模得到子块的统计量,并通过加权方法得到总的联合指标进行故障检测。同时对每个子块采用改进的故障诊断方法,提高了诊断效果。最后将该方法应用在TE过程的过程监控中,证明了该方法的有效性。
Multiblock strategy is widely used in plant-wide process monitoring to solve problems with complicated relationships between process variables. Traditional multiblock strategies and sub-block modeling methods are not effective in plant-wide process monitoring, because dynamic characteristics of the process have not been considered and knowledge or data information of the process is exclusively exploited. A mixed multiblock DMICA-PCA method was proposed to improve process monitoring performance. First, variables were sliced into initial sub-blocks by obtained process knowledge after analysis of process dynamics and further sliced into final sub-blocks by modified general Dice's coefficient(MGDC) between variables of initial sub-blocks. Then, the DMICA-PCA method was used to establish model and acquire statistical values of variables in final sub-blocks and a combined overall index from weighted sum was developed for fault detection, which improved performances by simultaneous diagnosis on each sub-block. Effectiveness of the proposed method was validated on monitoring the Tennessee-Eastman(TE) process.
出处
《化工学报》
EI
CAS
CSCD
北大核心
2017年第2期759-766,共8页
CIESC Journal
基金
国家自然科学基金重点项目(61134007)
国家自然科学基金青年项目(61403141)
上海市“科技创新行动计划”研发平台建设项目(13DZ2295300)
上海市自然科学基金项目(14ZR1421800)
流程工业综合自动化国家重点实验室开放课题基金资助项目(PAL-N201404)~~
关键词
主元分析
过程控制
过程系统
混合分块
全流程
改进的广义Dice’s系数
principal component analysis
process control
process systems
mixed multiblock
plant-wide process
modified general Dice's coefficient