期刊文献+

基于混合模型的SAR影像海陆分割算法 被引量:6

Sea-land segmentation algorithm for SAR images based on mixture models
原文传递
导出
摘要 合成孔径雷达(SAR)影像的海陆分割是诸如海洋目标检测和识别等基于海洋区域SAR影像解译的基础和关键环节之一。为解决复杂背景下遥感影像海陆分割问题,提出一种基于混合概率模型的海陆分割算法。首先利用Harris角点检测算法检测出影像中包含角点的图像子块,进而通过均值漂移(MS,mean-shift)算法对图像子块进行聚类分析得到陆地区域的像素样本;然后利用陆地的像素样本,通过最大期望(EM,expectation maximization)迭代算法拟合出混合模型概率密度分布的相关参数;最后通过混合概率模型检测出陆地前景区域,得到海陆分割结果。实验证明,本文方法能够对包含海陆的异质遥感影像实现有效的海陆分割。 Sea-land segmentation of synthetic aperture radar (SAR) image is one of the key stages for SAR image applications such as sea target detection and recognition,which are operated only in sea re- gions. A mixture probability models based algorithm is explored to solve the sea-land segmentation prob- lems in complex SAR image. First, Harris comer detector is employed to detect image patches containing corner points. Furthermore,the image patches are analyzed by mean-shift clustering algorithm, and the pixel samples of land regions are obtained. Second,according to pixel samples from land regions,the pa- rameters of probability density function in mixture models are fitted by expectation maximization (EM) algorithm. Finally,land foreground regions are segmented by mixture probability models. Experimental results demonstrate that the proposed algorithm has excellent performance to deal with heterogeneous SAR image.
作者 张苗辉 郭拯危 刘扬 ZHANG Miao-hui GUO Zheng-wei LIU Yang(Institute of Image Processing and Pattern Recognition, Henan University, Kaifeng 475004 Spatial Information Processing Engineering Laboratory of henan province, Kaifeng 475004 ,China)
出处 《光电子.激光》 EI CAS CSCD 北大核心 2017年第3期326-333,共8页 Journal of Optoelectronics·Laser
基金 国家自然科学基金(61305042) 中国博士后面上基金(2015M582182) 河南省科技攻关(152102210057) 河南大学基金(2012YBZR005)资助项目
关键词 合成孔径雷达(SAR) 海陆分割 HARRIS角点 均值漂移(MS) 混合模型 synthetic aperture radar (SAR) sea-land segmentation Harris comer mean-shift (MS) mixture models
  • 相关文献

参考文献3

二级参考文献37

  • 1CHANT F, VESE L A. Active contours without edges [ J]. IEEE Trans on Image Processing,2001,10(2) :266-277.
  • 2BRESSON X, ESEDOGLU S, VANDERGHEYNST P. Fast global minimization of the active contour/snake model [ J ]. Journal of Math- ematical Imaging Vision ,2007,28( 1 ) : 151 - 167.
  • 3CASELLES V, KIMMEL R, SAPIRO G. Geodesic active contours[ J ]. International Journal of Computer Vision, 1997,22( 1 ) :61-79.
  • 4孙正.基于T-snake模型的冠状动脉血管提取和运动跟踪[J].光电子.激光,2007,18(10):1260-1264. 被引量:6
  • 5Kass M,Witkin A,Terzopoulos D. Snakes,. Active contour models [J]. International Journal of Computer Vision, 1988,1 (4) 321-331.
  • 6Khatoonabadi S H,Bajic I V. Video object tracking in the compressed domain using spatio-temporal Markov ran- dom fields [ J] . IEEE Transactions on Image Processing, 2013,22(1) : 300-313.
  • 7QIN Zhang, Skjetne R. Image processing for identification of sea-ice floes and the floe size distributions[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(5) :2913-2924.
  • 8Rajendran A,Dhanasekaran R. Brain tumor segmentation on MRI brain images with fuzzy clustering and GVF snake modelt-J. International Journal of Computers Communi- cations & Control, 2014,7(3) : 530-539.
  • 9LI Qing-li, WANG Yi-ting, LIU Hong-ying, et al. A com- bined spatial-spectral method for automated white blood cells segmentation [J]. Optics & Laser Technology, 2013,54:225-231.
  • 10XU Chen-yang, Prince J L. Snakes, shapes, and gradient vector flowEJ-i. IEEE Transactions on Image Processing, 1998,7(3) :359-369.

共引文献5

同被引文献57

引证文献6

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部