期刊文献+

不同钙基吸收剂对玉米秸秆热解气化制氢特性的影响 被引量:10

Effects of different calcium-based absorbents on hydrogen production of corn stalk pyrolysis-gasification
下载PDF
导出
摘要 为了揭示不同钙基吸收剂对生物质热解气化制氢特性的影响机理,以玉米秸秆为原料在一个两段式热解气化装置上研究了添加不同钙基吸收剂对其制氢特性的影响,结果表明:煅烧石灰石、煅烧碳酸钙和煅烧白云石等3种吸收剂的添加均可有效吸收玉米秸秆热解气化过程中生成的CO_2,促进水气变换(WGS)反应的平衡向右移动,从而生成更多H_2;同时,吸收剂的主要组分CaO还可催化玉米秸秆热解挥发分的裂解与气化反应以及WGS反应,从而显著提高产气中H_2的体积分数与产率。另外,煅烧白云石中的含镁组分还显示出对气化过程以及CO_2吸收具有进一步的催化作用,使得其在玉米秸秆热解气化过程中可获得更高的H_2体积分数(71.8%)和产率[224.5 m L/(g db biomass)]。 The aim of this study is to reveal the influencing mechanism of different calcium-based absorbents on the hydrogen production of biomass pyrolysis-gasification. Using corn stalk as feedstock, the effects of several calcium-based absorbents on the hydrogen production characteristics were investigated in a two-stage fixed-bed biomass pyrolysis-gasification system. The results indicated that the addition of calcined limestone, calcined CaCO3 and calcined dolomite could effectively absorb the CO2 generated during the pyrolysis-gasification of corn stalk, which thus shifted the chemical equilibrium of water gas shift(WGS) reaction to produce more H2. Meanwhile, it was found that the main components CaO in the absorbents could also catalyze the cracking and steam gasification of pyrolytic volatiles as well as the WGS reaction, hence significantly increased the volume concentration and yield of H2 in the product gas. Furthermore, the magnesium component in the calcined dolomite was proved to have further catalytic effect on the gasification process as well as the CO2 absorption reaction to achieve a higher H2 concentration of 71.8% and yield of 224.5m L/(g db biomass).
出处 《可再生能源》 CAS 北大核心 2017年第4期502-507,共6页 Renewable Energy Resources
基金 生物质热化学技术国家重点实验室开放基金项目 国家自然科学基金项目(51306066)
关键词 玉米秸秆 热解气化 制氢 煅烧石灰石 煅烧碳酸钙 煅烧白云石 corn stalk pyrolysis-gasification H2production calcined limestone calcined CaCO3 calcined dolomite
  • 相关文献

参考文献3

二级参考文献38

  • 1王立群,陈兆生.生物质气化制备燃气过程的[火用]分析[J].农业机械学报,2013,44(S1):143-148. 被引量:4
  • 2刘江华,方新湘,周华.我国氢能源开发与生物制氢研究现状[J].新疆农业科学,2004,41(F08):85-87. 被引量:9
  • 3CLARK W W,RIFKIN J,O'CONNOR T,et al. Hydro- gen energy stations: along the roadside to the hydrogen economy [J]. Utilities Policy, 2005,13 ( 1 ) : 41-50.
  • 4KALINCI Y, HEPBASLI A, DINCER I. Biomass-based hydrogen production: A review and analysis [J]. Inter- national Journal of Hydrogen Energy,2009,34 (21) :8799-8817.
  • 5BALAT H,KIRTAY E. Hydrogen from biomass - present scenario and future prospects [J]. International Journal of Hydrogen Energy, 2010,35 (14) : 7416-7426.
  • 6TANKSALE A, BELTRAMINI J N, LUG M. A review of catalytic hydrogen production processes from biomass [J]. Renewable and Sustainable Energy Reviews, 2010,14(1) : 166-182.
  • 7SAXENA R C,SEAL D,KUMAR S,et al. Thermo- chemical routes for hydrogen rich gas from biomass: A review [J].Renewable and Sustainable Energy Re- views,2008,12(7) : 1909-1927.
  • 8COHCE M K,DINCER I, ROSEN M A. Thermodynam- ic analysis of hydrogen production from biomass gasifi- cation [J].International Journal of Hydrogen Ener- gy, 2010,35 (10) : 4970-4980.
  • 9CZERNIK S, EVANS R, FRENCH R. Hydrogen from biomass-production by steam reforming of biomass pyrol- ysis oil [J]. Catalysis Today,2007,129(3-4) :265-268.
  • 10LV P, YUAN Z, MA L, et al. Hydrogen-rich gas pro- duction from biomass air and oxygen/steam gasification in a downdraft gasifier[J].Renewable Energy,2007,32 (13) :2173-2185.

共引文献18

同被引文献142

引证文献10

二级引证文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部