期刊文献+

基于支持向量机的高速公路实时事故风险研判 被引量:8

Support Vector Machines Approach for Predicting Real-time Rear-end Crash Risk on Freeways
下载PDF
导出
摘要 采用G60高速公路(上海段)上布设的单组线圈检测器检测的车道级交通流数据对该路段上发生追尾事故可能性进行研究.通过配对案例对照的方法,分别对事故前5~10min,10~15min和15~20min的交通流数据建立了追尾事故实时预测支持向量机模型.结论表明基于事故前5~10min的交通流数据构建的支持向量机分类器能够有效的对事故进行实时预测,总体事故预测精度为84.85%,误报率为0.33%,该支持向量机分类器具有较高的实用价值,同时也表明了基于单流量检测器的交通流数据对事故进行实时预测的可靠性. The paper aims to study the relationship between rear-end crash potential and lane-level traffic data collected by single pair of loop detectors located on the G60 Freeway in Shanghai, China. The matched case-control method with support vector machines was applied to modelling the traffic data of different time slices before the crashes respectively, 5 -10minutes, 10-15 minutes and 15-20 minutes before the crash. Results indicate that support vector machines classifiers based on the traffic data of 5-10 minutes before the crashes have the highest crash prediction accuracy of 84. 85% and a false alarming rate 0.33%. The model proves to be valid to predict the real-time crash risk, which is helpful in freeway traffic management.
出处 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第3期355-361,共7页 Journal of Tongji University:Natural Science
基金 "十二五"国家科技支撑计划(2014BAG01-B04)
关键词 高速公路 追尾事故 实时研判 事故风险 支持向量机 freeway rear-end crash real-time prediction
  • 相关文献

参考文献4

二级参考文献50

  • 1钟连德,孙小端,陈永胜,贺玉龙,张杰.高速公路V/C与事故率关系研究[J].北京工业大学学报,2007,33(1):37-40. 被引量:20
  • 2Lord D,Manar A,Vizioli A.Modeling crash-flow-density and crash-flow-V/C ratio for rural and urban freeway segments [J].Accident Analysis and Prevention,2005,37(1):185-199.
  • 3El-Basyouny K,Sayed T.Comparison of two negative binomial regression techniques in developing accident prediction models [J].Transportation Research Record,2006,1950:9-16.
  • 4Hiselius L W.Estimating the relationship between accident frequency and homogeneous and inhomogeneous traffic flows [J].Accident Analysis and Prevention,2004,36(2):149-163.
  • 5Greibe P.Accident prediction models for urban roads [J].Accident Analysis and Prevention,2003,35(3):273-285.
  • 6Memon A Q.Road accident prediction models and the influence of traffic flow,road length,road class and vehicle class on accidents [C/CD]//Proceedings of the 87th Annual Meeting of the Transportation Research Board. Washington DC,2008.
  • 7Abdel-Aty M,Uddin N,Abdalla F,et al.Predicting freeway crashes based on loop detector data using matched case-control logistic regression [J].Transportation Research Record,2004,1897:88-95.
  • 8Abdel-aty M,Uddin N,Pande A.Split models for predicting multi-vehicle crashes during high-speed and low-speed operating conditions on freeways [J].Transportation Research Record,2005,1908:51-58.
  • 9Abdel-Aty M,Pande A.Identifying crash propensity using specific traffic speed conditions [J].Journal of Safety Research,2005,36(1):97-108.
  • 10Oh J,Oh C,Ritchie S,et al.Real-time estimation of accident likelihood for safety enhancement [J].Journal of Transportation Engineering,2005,131(5):358-363.

共引文献2310

同被引文献69

引证文献8

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部