期刊文献+

采用新型蚁群算法的UAV动态航迹规划 被引量:4

Dynamic Route Planning for UAV Based on Novel Ant Colony Algorithm
下载PDF
导出
摘要 航迹规划对UAV完成任务具有重要的意义。为解决突发威胁下的UAV航迹规划问题,提出了一种改进蚁群算法。采用全新的目标吸引策略、引入信息素增量调节因子并将优先级和信息素挥发系数进行组合优化来对基本蚁群算法进行了改进,提高了算法的求解效率,并进行仿真验证。根据战场已知威胁源生成Voronoi加权图,并与所提的改进蚁群算法相结合求解规划空间中的最优航迹。仿真结果表明,利用改进的蚁群算法能够有效地提高收敛速度和寻优能力,可以较好地解决突发威胁下的UAV航迹规划问题,保证UAV能够回避战场威胁,顺利飞抵目标点。 Route planning plays an important part in accomplishing task for UAV. Aiming at the route planning problem of UAV with unexpected threats, a method based on improved ant colony algorithm is proposed. In order to improve the solution efficiency of the algorithm, the new target attract strategy, the pheromone increment adjustment factor and the priority are introduced to improve the basic ant colony algorithm. Simulations are carried out. The weighted Voronoi diagram to search the optimal path speed and the ability in is created according to the certain threat sources, with the improved ant colony algorithm in the space. Simulation results show that the proposed method can improve the search searching the whole best solution of the route planning problem effectively, which is applicable to route planning of UAV with unexpected threats. So, the UAV can avoid the battlefield threats, reach the target point smoothly.
作者 李皓婧
出处 《电子器件》 CAS 北大核心 2017年第1期130-135,共6页 Chinese Journal of Electron Devices
关键词 航迹规划 UAV 蚁群算法 信息素 突发威胁 route planning UAV ant colony algorithm pheromone unexpected threats
  • 相关文献

参考文献9

二级参考文献73

共引文献70

同被引文献26

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部