期刊文献+

一种基于代理模型和差分进化的天线高维快速优化算法

An Efficient Optimization Method for High Dimensional Antenna Design Using Surrogate Model and Differential Evolution
下载PDF
导出
摘要 天线结构日趋复杂,设计自由度不断提高,经典优化算法需要对大量的参数组合进行仿真试探后才能得到最优结果,使得天线的高维优化设计效率普遍较低.针对这一问题,将代理模型与进化算法相结合,提出基于Kriging模型的差分进化算法(Kriging based Differential Evolution Algorithm,KDEA).算法以Kriging模型部分代替电磁仿真,预测差分进化后个体的响应和不确定性;以进化前后种群的构成和筛选来调节搜索的广度和深度.结果显示,利用此方法优化一个9变量双层贴片天线的阻抗带宽及主瓣增益,相比同类优化算法,所需电磁仿真次数可以减少70%以上. For novel antennas with complex structure and high degrees of freedom,the classical optimization methods require numerous simulation trials of different parameter combinations,which leads to a low efficiency in solving high dimensional antenna design and optimization problems.To address this issue,kriging based differential evolution algorithm(KDEA),which combines evolution algorithm with surrogate model,is proposed.By partly substituting electromagnetic(EM)solver,kriging model predicts the responses and uncertainties of each individual after differential evolution.The exploration and exploitation of the search space can be adjusted by the constitution and prescreening of the population before and after evolution.This algorithm is applied to optimize the impedance bandwidth and the mainbeam gain of a stacked patch antenna with 9variables.Compared with the other optimization methods,the number needed for EM simulation reduced at least by 70%.
出处 《安徽工程大学学报》 CAS 2017年第1期63-67,共5页 Journal of Anhui Polytechnic University
基金 安徽省高等教育提升计划基金资助项目(TSKJ2014B05)
关键词 天线设计 高维优化 KRIGING 差分进化 antenna design high dimensional optimization kriging differential evolution
  • 相关文献

参考文献6

二级参考文献39

  • 1袁军,邱扬,刘其中,田锦,谢拥军.基于空间映射及遗传算法的车载天线优化配置[J].电波科学学报,2006,21(1):26-32. 被引量:17
  • 2李明洋,刘敏,杨放.HFSS天线设计[M].北京:电子工业出版社,2011.
  • 3Liu Bo, Aliakbarian H, Ma Zhong-kun, et al.. An efficientmethod for antenna design optimization based onevolutionary computation and machine learning techniques[J].IEEE Transactions on Antennas and Propagation, 2014,62(1): 7-18.
  • 4Bandler J W, Cheng Q S, Dakroury S A, et al. Spacemapping: the state of the art[J]. IEEE Transactions onMicrowave Theory and Techniques, 2004, 52(1): 337—361.
  • 5Koziel S and Madsen K. Space mapping and beyond:knowledge-driven microwave design optimization[C]. 2012IEEE MTT-S International, Microwave Symposium Digest(MTT), Montreal, QC, Canada, 2012: 1-3.
  • 6Shaker G, Bakr M H, Sangary N, et al. Accelerated antennadesign methodology exploiting parameterized Cauchymodels[J]. Progress In Electromagnetics Research B, 2009,18:279-309.
  • 7Chen L L, Liao C, Lin W B, et al. Hybrid-surrogate-model-based efficient global optimization for high-dimensional antenna design[J]. Progress In Electro magneticsResearch, 2012, 124: 85-100.
  • 8Bose T and Gupta N. Design of an aperture-coupledmicrostrip antenna using a hybrid neural network[J]. IETMicrowaves Antennas & Propagation, 2012,6(4): 470-474.
  • 9Quepo N V, Haftka R T, Wei S, et al. Surrogate-basedanalysis and optimization[J]. Progress in Aerospace Sciences,2005,41: 1-28.
  • 10Koziel S and Bandler J W. Accurate modeling of microwavedevices using kriging corrected space mapping surrogates[J].International Journal of Numerical Modelling: ElectronicNetworks Devices and Fields, 2012, 25(2): 1-14.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部