期刊文献+

基于优化观测矩阵的共轭梯度改进算法 被引量:1

Improved Conjugate Gradient Algorithm Based on Optimization of Measurement Matrix
下载PDF
导出
摘要 测量矩阵的设计和信号的重构是压缩感知理论研究的核心问题。基于梯度下降法的QR分解观测矩阵优化使得信号在观测过程中的主要信息得以保存,而共轭梯度法则在信号的重构性能方面较理想。为此,将观测矩阵优化引入到共轭梯度重构算法中,针对共轭梯度重构算法,基于梯度下降法的QR分解优化观测矩阵,得到一个新的重构算法,即基于优化观测矩阵的共轭梯度算法。改进的算法中矩阵具有较大的列独立性以及与稀疏矩阵间相关性较低的特性,同时具有较好的性能。利用Matlab仿真实验来验证共轭梯度法与观测矩阵优化结合的重构算法的可行性及有效性。仿真结果表明,基于优化观测矩阵的共轭梯度算法在运行时间上缩短了2~3倍,优于其他一些重构算法。 The design of measurement matrix and the reconstruction of signal is the key in the study of compressed sensing theory. QR de- composition measurement matrix optimization based on gradient descent method makes it possible to preserve the main information during the process of observation, and the conjugate gradient algorithm is ideal for the reconstruction of the signal. The measurement matrix has been introduced to optimize the conjugate gradient reconstruction algorithm. In view of the conjugate gradient reconstruction algorithm, QR decomposition based on gradient descent method is used to optimize the measurement matrix and a new reconstruction algorithm, a conjugate gradient algorithm based on optimization of the measurement matrix, is obtained. In the improved algorithm, the matrix has larger column independence and lower correlation with sparse matrix, and has better performance with conjugate gradient method. Simulation experiments with Matlab have verified the new algorithm is feasible and effective. The results show that the conjugate gradient optimiza- tion algorithm with measurement matrix has been reduced 2 - 3 times in running time, which is greatly superior to other reconstruction algorithm.
出处 《计算机技术与发展》 2017年第5期73-76,共4页 Computer Technology and Development
基金 国家自然科学基金资助项目(61179027)
关键词 压缩感知 观测矩阵 共轭梯度法 梯度下降法 QR分解 compressive sensing measurement matrix conjugate gradient method gradient descent method QR decomposition
  • 相关文献

参考文献2

二级参考文献29

  • 1方红,章权兵,韦穗.基于非常稀疏随机投影的图像重建方法[J].计算机工程与应用,2007,43(22):25-27. 被引量:27
  • 2Candès E J,Wakin M B.An introduction to compressivesampling[J].IEEE Signal Processing Magazine,2008,25(2):21 30
  • 3Baraniuk R G.Compressive sensing[J].IEEE SignalProcessing Magazine,2007,24(4):118 121
  • 4Candès E J,Romberg J K,Tao T.Stable signal recoveryfrom incomplete and inaccurate measurements[J].Communications on Pure and Applied Mathematics,2006,59(8):1207 1223
  • 5Blumensath T,Davies M E.Gradient pursuits[J].IEEETransactions on Signal Processing,2008,56(6):2370 2382
  • 6Dai W,Milenkovic O.Subspace pursuit for compressivesensing signal reconstruction[J].IEEE Transactions onInformation Theory,2009,55(5):2230 2249
  • 7Mallat S G,Zhang Z F.Matching pursuits withtime-frequency dictionaries[J].IEEE Transactions on SignalProcessing,1993,41(12):3397 3415
  • 8Tropp J A,Gilbert A C.Signal recovery from randommeasurements via orthogonal matching pursuit[J].IEEETransactions on Information Theory,2007,53(12):46554666
  • 9Needell D,Vershynin R.Uniform uncertainty principle andsignal recovery via regularized orthogonal matching pursuit[J].Foundations of Computational Mathematics,2009,9(3):317 334
  • 10Figueiredo M A T,Nowak R D,Wright S J.Gradientprojection for sparse reconstruction:application to compressedsensing and other inverse problems[J].IEEE Journal ofSelected Topics in Signal Processing,2007,1(4):586 597

共引文献63

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部