期刊文献+

超大规模变量结构敏度求解技术研究 被引量:4

Study on The Sensitivity Analysis of Super Large-scale Optimization
下载PDF
导出
摘要 针对超大规模变量结构优化中的敏度求解问题,深入系统地研究了全解析法高效位移敏度求解理论,推导了壳单元微分刚度矩阵的解析表达式,引入虚位移法解决了结构刚度矩阵求逆运算,进而给出了位移敏度全解析表达式。采用科学高效的程序流程组织方法在HAJIF系统平台上开发了超大规模变量结构位移敏度快速求解模块。与差分法和半解析法的对比结果表明:本文算法敏度结果具有较高的可靠性;超大规模变量位移敏度算例测试表明本文算法效率约为差分法的70余倍,敏度结果一致性较好,所开发的模块能够高效可靠的解决超大规模变量位移敏度求解问题。 The sensitivity analysis plays a critical role in super large-scale optimization problem. The analyticmethod for sensitivity analysis has been investigated deeply, and the analytical expression of differential stiffnessmatrix is derived for shell elements and the displacement constraints sensitivity is obtained by using virtualdisplacement method. The method was programmed based on the HAJIF system with FORTRAN language.Validation examples showed that the proposed method has a high reliability in solving super large-scale optimizationproblem, and the efficiency of the present method is almost 70 times of that of the differential method.
出处 《机械科学与技术》 CSCD 北大核心 2017年第5期816-820,共5页 Mechanical Science and Technology for Aerospace Engineering
关键词 超大规模变量优化 解析法 微分刚度矩阵 HAJIF super large-scale optimization analytic method differential stiffness matrix HAJIF
  • 相关文献

参考文献3

二级参考文献30

  • 1邱志平,王晓军.结构灵敏度分析的区间方法[J].兵工学报,2005,26(6):798-802. 被引量:19
  • 2Diaz A,Sigmund O. Checkerboard Patterns in Lay- out Optimization[J]. Structural Optimization, 1995, 10 : 40-45.
  • 3Jog C S, Haber R B. Stability of Finite Element Models for Distributed--parameter Optimization and Topology Design [J]. Computer Methods in Applied Mechanics and Engineering, 1996, 130: 203-226.
  • 4Eschenauer H,Olhoff N. Topology Optimization of Continuum Structures:a Review[J]. Appl. Mech. Rev. ,2001,50(4):331-390.
  • 5Keulen F V,Haftka R T, Kim N H. Review of options for struc-tural design sensitivity analysis, parti : linear systems[ J]. Com-puter Methods In Applied Mechanics and Engineering,2005,194:3213 .3243.
  • 6Adelman H M,Haftka R T. Sensitivity analysis of discrete struc-tural systems[J]. AIAA Journal, 24(5) :823 -832.
  • 7Huan S C,Liang P. A new method of sensitivity analysis of staticresponses for finite element systems[ J]. Finite Elements inAnalysis and Design, 1998,29: 187 -203.
  • 8de Boer H, van Keulen F. Refined semi - analytical design sen-sitivities[ J]. International Journal of Solids and Structures,2000,37:6961 .6980.
  • 9Papadrakakis M,Nikolaos D L, Tsompanakis Y. Large scalestructural optimization : computational methods and optimizationalgorithms [J]. Archives of Computational Methods in Engi-neering, 2001,8(3):239 -301.
  • 10Tae H L. Adjoint method for design sensitivity analysis of multi-ple eigenvalues and associated eigenvectors [ J]. AIAA Jour-nal, 2007,45(8) :1998 -2004.

共引文献12

同被引文献37

引证文献4

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部