期刊文献+

基于联合特征的LDoS攻击检测方法 被引量:12

Approach of detecting low-rate DoS attack based on combined features
下载PDF
导出
摘要 低速率拒绝服务(LDoS,low-rate denial of service)攻击是一种降质服务(RoQ,reduction of quality)攻击,具有平均速率低和隐蔽性强的特点,它是云计算平台和大数据中心面临的最大安全威胁之一。提取了LDoS攻击流量的3个内在特征,建立基于BP神经网络的LDoS攻击分类器,提出了基于联合特征的LDoS攻击检测方法。该方法将LDoS攻击的3个内在特征组成联合特征作为BP神经网络的输入,通过预先设定的决策指标,达到检测LDoS攻击的目的。采用LDoS攻击流量专用产生工具,在NS2仿真平台和test-bed网络环境中对检测算法进行了测试与验证,实验结果表明通过假设检验得出检测率为96.68%。与现有研究成果比较说明基于联合特征的LDoS攻击检测性优于单个特征,并具有较高的计算效率。 LDoS (low-rate denial of service) attack is a kind of RoQ (reduction of quality) attack which has the characte- ristics of low average rate and strong concealment. These characteristics pose great threats to the security of cloud com- puting platform and big data center. Based on network traffic analysis, three intrinsic characteristics of LDoS attack flow were extracted to be a set of input to BP neural network, which is a classifier for LDoS attack detection. Hence, an ap- proach of detecting LDoS attacks was proposed based on novel combined feature value. The proposed approach can speedily and accurately model the LDoS attack flows by the efficient self-organizing learning process of BP neural net- work, in which a proper decision-making indicator is set to detect LDoS attack in accuracy at the end of output. The pro- posed detection approach was tested in NS2 platform and verified in test-bed network environment by using the Linux TCP-kernel source code, which is a widely accepted LDoS attack generation tool. The detection probability derived from hypothesis testing is 96.68%. Compared with available researches, analysis results show that the performance of com- bined features detection is better than that of single feature, and has high computational efficiency.
出处 《通信学报》 EI CSCD 北大核心 2017年第5期19-30,共12页 Journal on Communications
基金 国家自然科学基金资助项目(No.U1533107 No.U1433105) 中央高校基本科研业务基金资助项目(No.3122016D003) 中国民航大学研究生课程案例开发基金资助项目 天津市自然科学重点基金资助项目(No.17JCZDJC30900)~~
关键词 低速率拒绝服务攻击 联合特征 BP神经网络 异常检测 low-rate denial of service attack, united features, BP neural network, anomaly detection
  • 相关文献

参考文献9

二级参考文献66

  • 1钟诚,罗程.无监督异常检测的核聚类和序列分析方法[J].计算机研究与发展,2008,45(z1):326-331. 被引量:5
  • 2Xu Qinzhen,Yang Luxi,Zhao Qiangfu,He Zhenya.A NOVEL INTRUSION DETECTION MODE BASED ON UNDERSTANDABLE NEURAL NETWORK TREES[J].Journal of Electronics(China),2006,23(4):574-579. 被引量:1
  • 3CRISTINAINI N,SHWAE-TAYLDR J.支持向量机导论[M].李国正,王猛,曾华军,译.北京:电子工业出版社,2004:82-108.
  • 4KUZMANOVIC A, KNIGHTLY E W. Low-rate TCP-targeted de- nial-of-service attacks[A]. Proceedings of ACM SIGCOMM 2003[C]. Kaflsruhe, Germany,2003.
  • 5GUIRGUIS M, BESTAVROS A, MATTA L. Exploiting the transients of adaptation for RoQ attacks on lnternet resources[A]. Proc IEEE In- ternational Conference on Network Protocols (ICNP)[C]. Berlin,Germany, 2004.
  • 6GUIRGUIS M. Reduction of quality (RoQ) attacks on Internet end-systems[A]. Proceedings of the 24th IEEE INFOCOM[C]. Miami, Florida, 2005.
  • 7LUO X, CHANG R. On a new class of pulsing denial-of-service attacks and the defense[A]. Proceedings of Network and Distributed System Security Symposium (NDSS'05)[C]. San Diego, CA, 2005.
  • 8SARAT S, TERZIS A. On the effect of router buffer sizes on low-rate denial of service attacks[A]. Proceedings of the 14th International Conference on Computer Communications and Networks[C]. San Diego, CA, United States, 2005.
  • 9KWOK Y K. HAWK: halting anomalies with weighted choking to rescue well-behaved TCP sessions from shrew DDoS attacks[A]. ICCNMC 2005[C]. Zhangjiajie, China, 2005.
  • 10ZHANG C W, YIN J P, CAI Z P, et al. RRED: Robust RED algorithm to counter low-rate denial-of-service attacks[J]. IEEE Communication Letter,2010,14(5):489-491.

共引文献47

同被引文献100

引证文献12

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部