期刊文献+

接触概率和数据分组新鲜度感知的机会网络路由算法 被引量:3

Opportunistic Networks Routing Algorithm with Contact Probability and Data Packet Freshness Perception
下载PDF
导出
摘要 高效的数据分组传输机制是机会网络的核心问题之一,在分析机会网络节点运行规律的基础上,提出一种机会网络路由算法.该算法根据节点间相互接触的历史信息,计算节点接触的平均接触间隔时间,进一步得出两个节点间数据分组传递的期望时间;结合数据分组的新鲜度和节点间数据分组传递期望时间,设计数据分组的效用函数;基于分组的效用函数和传染路由,设计高效的机会网络路由算法,来指导数据分组的有效转发.仿真结果结果表明,与经典算法相比较,基于历史接触概率和数据分组新鲜度的机会网络路由机制能够有效的提高数据分组的传递成功率,同时减少传输时间. Finding an effective data packet delivery scheme is one of the core tasks in the opportunistic network. Based on analyzing the operation rule of opportunistic network nodes, we propose an opportunistic network routing algorithm. The algorithm computes the average contact interval between nodes based on the node historic contact information, and gets the expected delay for data packet delivery between nodes. It combines the data packet freshness and expected delay to designs data packet utility function. At last, we design effective opportunistic network routing algorithm based on utility function and epidemic routing to direct effective data packet forwarding. Simulation results show that HNRHF significantly improves success rate of data packet transmission, at the same time reduces the transmission time comparing with the classical algorithms.
作者 彭碧涛
出处 《小型微型计算机系统》 CSCD 北大核心 2017年第7期1459-1463,共5页 Journal of Chinese Computer Systems
基金 广东外语外贸大学特色创新项目(15T26)资助
关键词 机会网络 路由算法 接触概率 新鲜度 opportunistic networks opportunistic routing contact probability freshness
  • 相关文献

参考文献5

二级参考文献110

  • 1Hull B, Bychkovsky V, Zhang Y, Chen K, Goraczko M, Miu A, Shih E, Balakrishnan H, Madden S. CarTel: A distributed mobile sensor computing system. In: Proc. of the 4th Int'l Conf. on Embedded Networked Sensor Systems. Boulder: ACM, 2006. 125-138.
  • 2Pan H, Chaintreau A, Scott J, Gass R, Crowcroft J, Diot C. Pocket switched networks and human mobility in conference environments. In: Proc. of the 2005 ACM SIGCOMM Workshop on Delay-Tolerant Networking. Philadelphia: ACM. 2005. 244-251.
  • 3Juang P, Oki H, Wang Y, Martonosi M, Peh LS, Rubenstein D. Energy-Efficient computing for wildlife tracking: Design tradeoffs and early experiences with ZebraNet. In: Proc. of the 10th Int'l Conf. on Architectural Support for Programming Languages and Operating Systems. New York: ACM, 2002.96-107. DO1=http://doi.acm.org/10.1145/605397.605408
  • 4Pelusi L, Passarella A, Conti M. Opportunistic networking: data forwarding in disconnected mobile ad hoc networks. Communications Magazine, 2006,44(11): 134-141.
  • 5Conti M, Giordano S. Multihop ad hoe networking: The reality. Communications Magazine, 2007,45(4):88-95.
  • 6Fall K. A delay-tolerant network architecture for challenged Internets. In: Proc. of the 2003 Conf. on Applications, Technologies, Architectures, and Protocols for Computer Communications. Karlsruhe: ACM, 2003.27-34.
  • 7Akyildiz IF, Akan B, Chert C, Fang J, Su W. InterPlaNetary Intemet: State-of-the-Art and research challenges. Computer Networks, 2003,43(2):75-112.
  • 8Gupta P, Kumar P. The capacity of wireless networks. IEEE Trans. on Information Theory, 2000,46(2):388-404.
  • 9Grossglauser M, Tse DNC. Mobility increases the capacity of ad hoc wireless networks. IEEE/ACM Trans. on Networking, 2002, 10(4):477-486.
  • 10Small T, Haas ZJ. The shared wireless infostation model: A new ad hoc networking paradigm (or where there is a whale, there is a way). In: Proc. of the 4th ACM Int'l Symp. on Mobile Ad Hoc Networking. Annapolis: ACM, 2003. 233-244.

共引文献377

同被引文献28

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部