摘要
从汽车冷却气流形成机理分析入手,提出采用风扇罩主动格栅(Fan Housing Active Grille Shutter,FHAGS)对气流进行主动控制的技术手段。该技术有别于传统的主动格栅(Active Grille Shutter,AGS)只侧重降低风阻的单一功能,既可以保持传统风扇罩提高强制对流效率的特点,又可以提高中高速下的冲压气流流量。利用该技术,在等效冷却的前提下可以有效降低冷却风扇的转速,从而达到降低油耗、减小噪声的目的。以一辆参考车作为研究对象,通过计算流体动力学(Computational Fluid Dynamics,CFD)分析和试验验证,归纳推导出冷却气流的计算公式和控制逻辑,并结合热环境风洞试验对该技术的有效性进行验证。试验表明,FHAGS作为一项汽车节能降噪技术,具有一定的推广价值。
From the analysis on the formation mechanism of car cooling airflow,a technology called fan housing active grille shutter(FHAGS) for airflow control was presented. The technique is different from the traditional active grille shutter(AGS), which focuses on the single function of reducing wind resistance. The FHAGS can not only keep the high efficiency of the traditional fan housing, but also can increase the cooling airflow under the stamping mode at middle/high speed. On the premise of equivalent cooling, using this technique can reduce the cooling fan speed, and therefore decrease the noise level and fuel consumption. Taking a reference vehicle as the research object, the paper introduced the test layout, data processing and the derivation of formulas. The effectiveness of the technique was verified by using the thermal wind tunnel test combined with the cooling air flow control theory. It is suggested that the FHAGS is worthy to be promoted as a technology of energy-saving and noise reduction.
出处
《汽车工程学报》
2017年第4期288-298,共11页
Chinese Journal of Automotive Engineering
基金
空气动力学国家重点实验室开放基金资助(SKLA20160206)
关键词
汽车热管理
风扇罩主动格栅
冷却气流
降油耗
降噪声
thermal management
fan housing active grille shutter
cooling air flow
fuel consumption reduction
fan noise reduction