期刊文献+

连续变量相干态量子神经网络模型的构建 被引量:7

Construction of continuous-variable coherent state quantum neural network model
下载PDF
导出
摘要 为了将功能强大的神经网络应用到连续变量量子信息处理中,需要建立连续变量的量子神经网络(QNN)模型。以相干态量子逻辑门为基元,基于QNN原理构建了由输入层、隐藏层和输出层组成的量子线路,实现了连续变量相干态量子神经网络(CSQNN)功能。模型通过多控CNOT门实现量子态操作,利用相位旋转门完成网络参数的学习训练。仿真结果表明在CSQNN辅助下,阻尼系数为0.5的振幅阻尼信道的量子隐形传态保真度显著提高,趋近1,说明提出的CSQNN模型能有效处理连续变量量子信息。 In order to apply a powerful neural network to the continuous-variable quantum inibrmation processing, it is necessary to construct the continuous-variable quantum neural network (QNN) model. Coherent state quantum logic gates are taken as basic elements. Quantum circuit composed of input layer, hidden layer and output layer is constructed based on QNN principle, and the function of continuous-variable coherent state quantum neural network (CSQNN) is realized. The model realizes quantum state operation by using multi-bit CNOT gate, and the learning training of network parameters is completed by using phase rotation gates. Simulation results show that under the assistance of CSQNN, the quantum teleportation fidelity of amplitude damping channel with damping coefficient of 0.5 is significantly improved, and its value approaches 1. It's shown that the proposed CSQNN model can effectively deal with the continuous-variable quantum information.
作者 陈珊琳 黄春晖 CHEN Shanlin HUANG Chunhui(College of Physics and Information Engineering, Fuzhou University, Fuzhou 350116, China)
出处 《量子电子学报》 CSCD 北大核心 2017年第4期467-472,共6页 Chinese Journal of Quantum Electronics
基金 国家自然科学基金 61177072~~
关键词 量子信息 量子神经网络 学习训练 连续变量 量子隐形传态 quantum information quantum neural network learning training continuous-variable quantum teleportation
  • 相关文献

参考文献2

二级参考文献42

  • 1钟艳花,余永权,余晓敏.量子神经动力学分析[J].量子电子学报,2005,22(2):192-195. 被引量:2
  • 2HAMFM,KOSTANICI.神经计算原理[M].北京:机械工业出版社,2007:106-Z09.
  • 3周树德,王岩,孙增圻,等.量子神经网络[C].中国,香港:中国智能自动化会议CIAC论文集(上册),2003:163-168.
  • 4Hagan M T,Demuth H B,Beale M H.神经网络设计[M].戴奎,等译.北京:机械工业出版社,2006.
  • 5Rabunal J R, Dorado J.Artificial neural networks in real- life applications[M].[S.1.]:Idea Group Publishing,2005.
  • 6Gupta S,Zia R K P.Quantum neural networks[J].Joumal of Computer and System Science, 2001,63 : 355-383.
  • 7Narayanan A, Menneer T.Quantum artificial neural network architectures and components[J].Information Sciences,2000,128:231-255.
  • 8GriffithsDJ.量子力学概论[M].英文版,原书第2版.北京:机械工业出版社,2007.
  • 9DiracPAM.量子力学原理[M].英文版,第4版.北京:科学出版社,2008.
  • 10Jain A K, Duin R P W, Mao Jianchang.Statistical pattern recognition: a review[J].IEEE Transactions on Pattern Analy- sis and Machine Intelligence, 2000,22:4-33.

共引文献8

同被引文献36

引证文献7

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部