摘要
用P_n表示n个点的路,C_n表示长为n的圈,C_6+3K_2表示圈C_6添加三条相邻的边3K_2=C_3得到的图.在Kleitman给出的完全二部图的交叉数cr(K_(6,n))=Z(6,n)的基础上,得到了特殊六阶图C_6+3K_2与路P_n,圈C_n的联图交叉数分别为Z(6,n)+3[n/2]+2与Z(6,n)+3[n/2]+4.
Let Pn be the path on n vertices, Cn be the cycle with n edges, C6 + 3K2 be the graph which is obtained from the cycle C6 by adding three adjacent edges. In the paper, for special graph C6 + 3K2, we give the crossing numbers of its join product with the path Pn as well as the cycle Cn are Z(6, n) +3[n/2] +2 and Z(6,n) +3[n/2] +4. Our proof depends on Kleitman's results for the complete bipartite graph cr(K6, n) = Z(6, n).
出处
《运筹学学报》
CSCD
北大核心
2017年第3期23-34,共12页
Operations Research Transactions
基金
湖南省自然科学基金(No.2017JJ3251)
湖南省教育厅科研项目(No.15C1090)
关键词
交叉数
联图
路图
圈图
crossing number, join product, path, cycle