期刊文献+

空间数据库中基于Voronoi图的线段组最近邻查询 被引量:1

Voronoi-based Line Segment Group Nearest Neighbor Query in Spatial Database
下载PDF
导出
摘要 为了弥补现有的研究成果无法有效的处理空间数据库中组最近邻查询问题,提出了空间数据库中基于Voronoi的线段组最近邻查询方法.静态数据集情况下提出了STA_LGNN算法,这一查询过程分为两个阶段,包括过滤过程和精炼过程.在过滤过程中,根据Voronoi图的性质以及影响区域的几何特点,提出相应的剪枝规则.在精炼过程中,根据线段间位置关系得出相应的距离表示方法,通过对距离进行比较后得到最终正确的查询结果.理论研究和实验表明,所提算法能有效地处理空间数据库中基于线段的组最近邻查询问题. To remedy the defects of existing methods can not deal with the line segment group nearest neighbor query in spatial database, the line segment GNN query method in spatial database based on Voronoi diagram ( line group nearest neighbor, LGNN ) is put forward. Algorithm STA_LGNN is divided into two stages that include filtration process and refining process. According to the property of Voronoi diagram and the geometric characteristics of affected area, the appropriate pruning strategies are proposed in the filtration process. In refining process, according to the relationship between line segments, get the final correct query results by comparing distance. The theatrical study and experimental results show that the algorithm can effectively deal with the line segment GNN query in spatial database.
出处 《小型微型计算机系统》 CSCD 北大核心 2017年第10期2341-2345,共5页 Journal of Chinese Computer Systems
基金 黑龙江省教育厅科学技术研究项目(12531z004)资助
关键词 空间数据库 VORONOI图 线段 组最近邻 spatial database Voronoi diagram line group nearest neighbor
  • 相关文献

参考文献6

二级参考文献55

  • 1周培德.计算几何[M].北京:清华大学出版社,2008:104-107.
  • 2Bespamyatikh S, Snoeyink J. Queries with segments in Voronoi diagrams[C]//Proc of the 10th Annual ACM-SIAM Symp on Discrete Algorithms. New York: ACM, 1999: 122- 129.
  • 3Tao Yufei, Dimitris P, Qiongmao S. Continuous nearest neighbor search [C] //Proc of the 28th VLDB Conf. San Francisco: Morgan Kaufmann, 2002:287-298.
  • 4Guttman A. R-trees: A dynamic index structure for spatial searching [C] //Proc of ACM S1GMOD Int Conf on Management of Data. New York: ACM, 1984:45-57.
  • 5Papadias D, Shen Q, Tao Y, et al. Group nearest neighbor queries [C]. ICDE, 2004:301-312.
  • 6Li H, Lu H, Huang B, et al. Two ellipse-based pruning methods for group nearest neighbor queries [ C]. GIS, 2005 : 192-199.
  • 7Luo K, Chen H, Ohbo N. Effcient methods in finding aggregate nearest neighbor by projection-based filtering [ C]. ICCSA, 2007 : g21-833.
  • 8Namnandoij S, Chen H, Furuse K, et al. Efficient bounds in find- ing aggregate nearest neighbors [ C]. DEXA, 2008:693-700.
  • 9Yiu M, Mamoulis N, Dai X, et al. Efficient evaluation of probabi- listic advanced spatial queries on existentially uncertain data [J]. TKDE, 2009,21 ( 1 ) : 108-122.
  • 10Li Jian-zhong, Yu Ge, Zhou Ao-ying. Demand and challenge of uncertain data management [J]. Communications of the CCF, 2009,5(4) :6-14.

共引文献37

同被引文献7

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部