期刊文献+

基于图流在线非负矩阵分解的社团检测

Graph Streams Community Detection via Online Nonnegative Matrix Factorizations
下载PDF
导出
摘要 针对现有的在线社团检测方法大多仅从增量相关的节点和边出发,难以有效挖掘社团结构的动态变化特性问题,提出了一种基于图流在线非负矩阵分解的社团检测方法.首先将网络中持续到达的图数据按照流式数据进行存储和预处理,然后借鉴梯度下降思想,采用在线非负矩阵分解架构,根据不同时刻达到的图流序列,实时迭代更新社团归属矩阵,并通过有效的学习率和缓存策略设置,保证了图流处理的收敛性和合理性.实验结果表明,相比于已有在线社团检测方法,该方法具备更高的社团检测精度. While the existing online community detection methods mostly only deal with the nodes and edges from the increment part,which are difficult to effectively detect the dynamic changes in the community structure. Based on this,a newmethod for the detection of flowgraphs based on online non negative matrix factorization( ONMF) is proposed. Firstly,our method put graph data into the cache as continuous streams to deal with. Then,our method iteratively updates the existing community belonging matrix real-time using online nonnegative matrix decomposition architecture and by means of the projected gradient descent theory. Lastly,through effective learning rate and cache strategy setting,our method ensures the convergence and rationality of graph stream processing. Experiments on real network data sets showthat ONMhas a higher community detection quality compared with the existing methods.
出处 《电子学报》 EI CAS CSCD 北大核心 2017年第9期2077-2084,共8页 Acta Electronica Sinica
基金 国家自然科学基金创新群体(No.61521003) 国家自然科学基金(No.61171108) 国家973重点基础研究发展计划(No.2012CB315901 No.2012CB315905) 国家科技支撑计划(No.2014BAH30B01)
关键词 在线 非负矩阵分解 图流 社团检测 online nonnegative matrix factorization graph streams community detection
  • 相关文献

参考文献4

二级参考文献73

  • 1B W Kemighan, S Lin. An efficient heuristic procedure for par- titioning graphs I J]. The Bell system technical journal, 1970,49 (1) :291 - 307.
  • 2M Belkin, P Niyogi. Laplacian eigenmaps and stxtral tech- niques for embedding and clustering I A]. Advances in Neural Information Prcr_essing Systems I C ]. Vancouver, Canada: M IT Press,2001,14:585 - 591.
  • 3S White, P Smyth. A spectral clustering approach to finding communities in graphs [ A. Kamath C,Gotximan A,eds.Pm- ceedings of the 5th SIAM International Conference on Data Mining [ C]. Philadelphia: SIAM, 2005.76 - 84.
  • 4F Wu, B A Huberman. lmding communities in linear time: a physics approach I J ]. The European Physical Journal B-Con- densed Matter and Complex Systems, 2004,38 (2) : 331 - 338.
  • 5H Zhou. Distance, Dissimilarity index, and network community structure [ J] .Physical Review E,2003,67(6) :061901.
  • 6P Ports, M Latapy. Computing communities in large networks using random walks I A]. Proceedings of Computer and Infor- marion Sciences,-ISCIS 2005 [ C ]. Berlin, Heidelberg: SpringerVerlag, 2005,3733 ( 31 ) : 284 - 293.
  • 7M Girvan, M E J Newman. Community slructttre in social and biological networks [ J]. Proceedings of National Academy of Science of the United States of America, 2002, 99:7821 - 7826.
  • 8M E J Newman,M Girvan. Finding and evaluating community structure in networks [ J ]. Physical Review E, 2004, 69: 026113.
  • 9M E J Newman. Fast algorithm for detecting community struc- ture in networks [ J] .Physical Review E,2004,69:066133.
  • 10F Radicchi, C Castellano, F Cecconi, V Loreto, D Parisi. Defining and identifying communities in networks [ J ]. Pro- ceedings of the National Academy of Sciences of the United States of America, 2004,101(9) :2658 - 2663.

共引文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部