摘要
提出动态规划法求解模糊最短路问题。对于给定起点和终点的有向模糊图,可以从终点出发,逆向追溯分阶段探寻最短路,同时删去非最短路。而对于每个阶段的最短路问题,给出了求解最短路长度和最短路的方法,即利用模糊最小算子求最短路长度,并根据每条路与最短路长度的贴近度来确定最短路。最后通过例子说明此种方法的可行性和有效性。
The dynamic programming method for solving fuzzy shortest path problem is given. For the fuzzy graph with a given starting point and end point, we can reversely explore the most short circuit from the end point in stages, and delete non shortest path. For the shortest path problem in each stage, a method to calculate the shortest path length and the shortest path is presented to solve the shortest path length by u- sing with pie. Key the fuzzy minimum operator and to determine the shortest path according to the closeness of each road the shortest length. Finally the validity and feasibility of this method is illustrated through an exam programmingple.
作者
李红霞
LI Hong-xia(College of Mathematics and Statistics, LongDong University, Qingyang 745000, Gans)
出处
《陇东学院学报》
2017年第5期1-4,共4页
Journal of Longdong University
基金
甘肃省高等学校科研项目<模糊图在网络优化中的应用研究>(2015A-144)
2016年度甘肃省"十三五"教育科学规划课题<地方高校师范专业教师职业技能嵌入式培养的应用研究>(GS[2016]GHB1255)
关键词
模糊数
最短路
动态规划
fuzzy number
the shortest path
dynamic programming