摘要
利用算子直和分解的方法、全连续摄动理论和矩阵分析理论,研究了具有矩阵系数的二阶自伴向量微分算子的本质谱,由算子系数矩阵的特征值给出了该算子的本质谱的分布范围.
The essential spectrum of second-order self-adjoint vector differential op- erators with matrix coefficients was investigated by using the method of decomposition of operator in direct sum space, whole continuous perturbation theory and matrix anal- ysis theory. The distribution range of the essential spectrum of the operator is given by using the characteristic value of coefficient matrix.
作者
钱志祥
QIAN Zhixiang(The Department of Basic Education, Guangdong Polytechnic College, Zhaoqing 526100, China)
出处
《应用泛函分析学报》
2017年第3期287-293,共7页
Acta Analysis Functionalis Applicata
基金
广东省高层次人才培养项目(9251064101000015)
广东理工学院科技项目(GKJ2016004)
关键词
向量微分算子
对称算子
自共轭算子
Weyl列
本质谱
vector differential operator
symmetric differential operator
self-adjointdifferential operator
Weyl sequence
essential spectrum