期刊文献+

社会网络隐私信息研究 被引量:2

Study on social network privacy information
下载PDF
导出
摘要 人们对于微博、微信和Facebook等社交网站的使用频率增加,由其产生出的社会网络数据也随之增加。攻击者对这类数据进行分析和研究,可以快速获得他人的地址、喜好、网络交易等隐私信息。目前已有许多专家对社会网络数据发布隐私保护模型进行研究。文章主要介绍社会网络相关概念、社会网络隐私信息及其相关的隐私保护技术。 People for the use of frequency of social networks such as Facebook, micro-blog and We Chat is increased, and the social networks data generated by them had also increased. Attackers analyze and study this kind of data, which can quickly obtain other people's address, preferences, online transactions and other privacy information. At present, many experts have studied the privacy protection model of social network data publishing. This paper introduces the concepts of social networks, social network privacy information and related privacy protection technologies.
出处 《无线互联科技》 2017年第22期28-29,40,共3页 Wireless Internet Technology
基金 2016年陕西教育厅科学研究项目 项目名称:基于智能终端的泛在学习系统的研究 项目编号:16JK2253
关键词 社会网络 隐私 信息保护 social network privacy information protection
  • 相关文献

参考文献5

二级参考文献54

  • 1杨晓春,刘向宇,王斌,于戈.支持多约束的K-匿名化方法[J].软件学报,2006,17(5):1222-1231. 被引量:60
  • 2Sweeney L. k-anonymity.. A model for protecting privacy[J]. International Journal on Uncertainty, Fuzziness and Knowledge- Based Systems, 2002,10(5) : 557-570.
  • 3Maehanavajjhala A, Gehrke J, Kifer D, et al. 1-diversity: Privacy beyond k-anonymity[J]. ACM Transactions on Knowledge Discovery from Data, 2007,1 (1) : 24-35.
  • 4Li N, Li T. t-closeness:Privacy beyond k-anonymity and 1-diversity[C]//Proc, of the 23rd International Conference on Data Engineering. Istanbul: IEEE, 2007 : 106-115.
  • 5Mislove A, Marcon M, Krishna P, et al. Measurement and Analysis of Online Social Networks[C]//Proc. of IMC' 07. New York: ACM, 2007 :29- 41.
  • 6Albert R,Jeong H,Barabasi A L. Error and attack tolerance of complex networks[J]. Nature, 2600,406 : 378-382.
  • 7Hay M, Miklau G, J ensen D, et al. Anonymizing social networks [R]. 07-19. University of Massachusetts Amherst,2007.
  • 8Zheleva E, Getoor L. Preserving the privacy of sensitive relationships in graph data[C]//Proc, of the 1st ACM SIGKDD Work shop on Privacy, Security, and Trust in KDD. Berlin: ACM, 2007: 153- 171.
  • 9Campan A, Truta T M. A clustering approach for data and structural anonymity in social networks[C]//Proc, of the 2nd ACM SIGKDD International Workshop on Privacy, Security, and Trust in KDD. Las Vegas: ACM, 2008: 93-104.
  • 10Liu L, Wang J, Liu J, et al. Privacy preserving in social networks against sensitive edge disclosure[R]. CMIDA-HiPSCCS 006-08. Department of Computer Science, University of Kentucky, 2008.

共引文献29

同被引文献3

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部