期刊文献+

融合GPS/SINS的容积卡尔曼滤波智能车位置姿态估计方法 被引量:5

Position and attitude estimation method for intelligent vehicle using GPS/SINS and cubature Kalman filter
下载PDF
导出
摘要 针对智能车在城市密集区域其全球定位系统(Global Positioning System,GPS)系统易受遮挡、干扰与多路径反射等因素影响,导致定位失灵和定位精度较低的问题,以及智能车位置姿态估计模型的非线性问题,提出了1种融合GPS/SINS的容积卡尔曼滤波智能车位置姿态估计方法。该方法将GPS和捷联惯导系统(Strap-down Inertial Navigation System,SINS)优势互补,构建以姿态误差、速度误差和位置误差等15维的系统状态方程,以GPS的位置/速度与SINS的位置/速度差值的6维系统观测方程,并采用容积卡尔曼滤波器对GPS和SINS的观测矢量进行有效关联与融合,估计并解算出车辆运动情况下的最优位置、速度、姿态参数。通过与GPS系统、SINS系统和基于扩展卡尔曼滤波的位姿估计方法仿真对比。结果表明,本文方法能给智能车提供精确可靠的车辆位姿参数。 Since the Global Positioning System(GPS)fails to location when the antenna is obstructed and lower positioning accuracy of the intelligent vehicle in crowded urban environment,a cubature Kalman filter-based vehicle position and attitude estimation using fusion of GPS/SINS is proposed.The GPS and Strap-down Inertial Navigation System(SINS)integrated navigation system using the observation of position,velocity and attitude are described,and the dynamic equations for the integrated system are established.The optimal estimation fusion structure of the cubature Kalman Filter is built.Experimental results proved that the proposed method can provide real-time,stable and reliable vehicle location parameters compared with the GPS subsystem,the SINS subsystem and the location method using the extended Kalman filter.
出处 《中国科技论文》 北大核心 2017年第14期1621-1626,共6页 China Sciencepaper
基金 国家自然科学基金资助项目(61603058 61501058) 中央高校基本科研业务费专项资金资助项目(310824164007)
关键词 智能车 定位技术 GPS/SINS 非线性模型 容积卡尔曼滤波 : intelligent vehicle localization technology GPS/SINS nonlinear model cubature kalman filter
  • 相关文献

参考文献6

二级参考文献61

  • 1杨元喜,高为广.基于多传感器观测信息抗差估计的自适应融合导航[J].武汉大学学报(信息科学版),2004,29(10):885-888. 被引量:27
  • 2王新洲.GPS基线向量网粗差定位试验[J].武汉测绘科技大学学报,1995,20(2):157-162. 被引量:12
  • 3高为广,杨元喜,崔先强,张双成.IMU/GPS组合导航系统自适应Kalman滤波算法[J].武汉大学学报(信息科学版),2006,31(5):466-469. 被引量:40
  • 4Teunissen P J. Quality Control in Integrated Navigation Systems[J]. Aerospace and Electronic Systems Magazine, 1990,5(7): 35-41.
  • 5Hewitson S, Wang J L. GNSS Receiver Autonomous Integrity Monitoring (RAIM) with a Dynamic Model[J]. Journal of Navigation, 2007, 60 (2) 247-263.
  • 6Umar I B, Washington Y O, Shao Junfeng. Integri- ty of an Integrated GPS/INS System in the Presence of Slowly Growing Errors. Part I: A Critical Re- view[J]. GPSSolution, 2007(11) :173-181.
  • 7Hewitson S. Quality Control for Integrated GNSS and Inertial Navigation Systems[D]. Sydney: The University of New South Wales,2006.
  • 8Wang J L, Ober P B. On the Availability of Fault Detection and Exclusion in GNSS Receiver Autonomous Integrity Monitoring[J].Journal of Navigation,2009, 62(2) :251-261.
  • 9Wang J, Wang J L, Roberts C. Reducing GPS Carrier Phase Errors with EMD-Wavelet for Precise Static Positioning[J].Survey Review, 2009, 41 (312) :152-161.
  • 10Asaoka A, Ueda S. An experimental study of a magnetic sensor in an automated highway[ A]. Proceedings of the IEEE Intelligent Vehicles Symposium[C]. USA: IEEE, 1996. 373- 378.

共引文献98

同被引文献43

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部