期刊文献+

基于局部差别性分析的目标跟踪算法 被引量:4

Robust Object Tracking Based on Local Discriminative Analysis
下载PDF
导出
摘要 在复杂场景下,为了更好地提升跟踪的鲁棒性,基于局部的相似度测量得到了广泛应用。然而,局部遮挡,形变和光照变化等场景的复杂性,基于传统局部相似度测量的目标跟踪存在很大缺点,例如,在跟踪过程中,仅仅依靠目标和模板的匹配度容易造成跟踪的偏移现象。鉴于此,该文提出一种基于局部差别性相似度测量的目标跟踪算法。首先,以目标-背景的差异性,形成相似性和差异性相结合的局部判别性相似度测量;其次,基于子块在视频序列中的差异性,对子块进行差异性学习,以提高跟踪的准确性。最后,在粒子滤波框架下,基于差别性局部区域测量构建了一种有效的目标跟踪算法。实验结果表明,在复杂图像序列中,该算法实现了目标的准确跟踪,并在光照变化、旋转、缩放和遮挡等方面具有较好的效果。 The local similarity measurements are usually used for improving the tracking robustness under the complex scene. However, this method have drawbacks in cases of partial occlusion, deformation and rotation. For example, the method only considers traditional similarity measurements of targets and templates, results in the matching errors to lead to tracking failure. In this paper, a target tracking algorithm is proposed based on measurements of the local difference similarities. The presented method has the following advantages: firstly, both similarities and differences are considered for measurement; secondly, the differential weight learning of the local region is carried out to improve the accuracy of sub-block difference measurement; at last, an effective and efficient tracker is designed based on the difference analysis and a simple update manner within the particle filter framework. Experimental results show that the proposed algorithm achieves better performance than traditional competing methods in various factors, such as illumination changes, part occlusion, scale changes and so on.
出处 《电子与信息学报》 EI CSCD 北大核心 2017年第11期2635-2643,共9页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61300007)~~
关键词 目标跟踪 局部稀疏表示 相似度测量 判别性分析 差异性权重 Object tracking Local sparse representation Similarity measurement Discriminative analyses Difference weight
  • 相关文献

参考文献3

二级参考文献36

  • 1VANTREES H L. Detection, Estimation, and Modulation Theory-Part I[M]. New York: John Wiley and Sons, 1968, Chapter 2.
  • 2CHALLA S, MORELANDE M R, MUSIKI D, et al. Fundamentals of Object Tracking[M]. Cambridge: University Press, 2011, Chapter 4.
  • 3RICHARDS M A. Fundamentals of Radar Signal Processing[M]. New York: McGraw Hill, 2005, Chapter 1.
  • 4YAN Junkun, LIU Hongwei, JIU Bo, et al. Simultaneous multibeam resource allocation scheme for multiple target tracking[J]. IEEE Transactions on Signal Processing, 2015, 63(12): 3110-3122. doi: 10.1109/TSP.2015.2417504.
  • 5RAHMATHULLAH A S, SVENSSON L, SVENSSON D, et al. Smoothed probabilistic data association filter[C]. 2013 16th International Conference on Information Fusion, Istanbul, Turkey, 2013: 1296-1303.
  • 6JIANG X, HARISHAN K, THARMARASA R, et al. Integrated track initialization and maintenance in heavy clutter using probabilistic data association[J]. Signal Processing, 2014, 91(1): 241-250. doi:10.1016/j.sigpro.2013. 06.026.
  • 7FORTMANN T, BAR-SHALOM Y, SCHEFFE M, et al. Detection thresholds of tracking in clutter-a connection between estimation and signal processing[J]. IEEE Transactions on Automatic Control, 1985, 30(3): 221-229. doi: 10.1109/TAC.1985.1103935.
  • 8LI X R and BAR-SHALOM Y. Detection threshold selection for tracking performance optimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(3): 742-749. doi: 10.1109/TAC.1985.1103935.
  • 9GELFAND S B, FORTMANN T E, and BAR-SHALOM Y. Adaptive detection threshold optimization for tracking in clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(2): 514-523. doi: 10.1109/7.489496.
  • 10ASLAN M S, SARANL A, and BAYKAL B. Tracker-aware adaptive detection: an efficient closed-form solution for the Neyman-Pearson case[J]. Digital Signal Processing, 2010, 20(5): 1468-1481. doi: 10.1016/j.dsp.2010.01.008.

共引文献50

同被引文献13

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部