期刊文献+

基于代价敏感深度决策树的公交车环境人脸检测 被引量:4

Face detection in bus environment based on cost-sensitive deep quadratic tree
下载PDF
导出
摘要 针对公交车环境下的人脸检测具有光照变化、模糊、遮挡、低分辨率和姿势变化等问题,提出了基于代价敏感深度决策树的人脸检测算法。首先,基于归一化的像素差异(NPD)特征构建单个深度二次树(DQT);接着,根据当前决策树的分类结果,利用代价敏感Gentle Adaboost方法对样本权重进行更新,依次训练出多棵深度决策树;最后,将所有决策树通过Soft-Cascade级联得到最终的检测算法。在人脸检测数据集(FDDB)和公交车视频上的实验结果表明,所提算法与现有的深度决策树算法相比,在检测率和检测速度上均有提升。 The problems of face detection in bus environment include ambient illumination changing, image distortion, human body occlusion, abnormal postures and etc. For alleviating these mentioned limitations, a face detection based on cost- sensitive Deep Quadratic Tree (DQT) was proposed. First of all, Normalized Pixel Difference (NPD) feature was utilized to construct and train a single DQT. According to the classification result of the current decision tree, the cost-sensitive Gentle Adaboost method was used to update the sample weight, and a number of deep decision trees were trained. Finally, the classifier was produced by Soft-Cascade method with multiple upgraded deep quadratic trees. The experimental results on Face Detection Data set and Benchmark (FDDB) and bus video show that compared with the existing depth decision tree algorithm, the proposed algorithm has improved the detection rate and detection speed.
出处 《计算机应用》 CSCD 北大核心 2017年第11期3152-3156,3187,共6页 journal of Computer Applications
基金 国家自然科学基金资助项目(U1509207 61325019 61472278 61403281 61572357)~~
关键词 归一化的像素差异特征 代价敏感 深度二次树 GENTLE ADABOOST方法 Soft-Cascade Normalized Pixel Difference (NPD) feature cost-sensitive Deep Quadratic Tree (DQT) Gentle Adaboostmethod Soft-Cascade
  • 相关文献

参考文献2

二级参考文献21

  • 1涂承胜,陆玉昌.Boosting视角[J].计算机科学,2005,32(5):140-143. 被引量:2
  • 2闫明松,周志华.代价敏感分类算法的实验比较[J].模式识别与人工智能,2005,18(5):628-635. 被引量:14
  • 3Lopez V, Fernandez A, Moreno-Torres JG, Herrera F. Analysis of preprocessing vs. cost-sensitive learning for imbalanced classification. Open problems on intrinsic data characteristics. Expert Systems with Applications, 2012,39(7):6585-6608. [doi: 10. 1016/j.eswa.2011.12.043].
  • 4Lomax S, Vadera S. A survey of cost-sensitive decision tree induction algorithms. ACM Computing Surveys (CSUR), 2013,45(2): 16-50. [doi: 10.1145/2431211.2431215].
  • 5Domingos P. Metacost: A general method for making classifiers cost-sensitive. In: Proc. of the 5th ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining (KDD’99). New York: ACM Press, 1999. 155-164. [doi: 10.1145/312129.312220].
  • 6Elkan C. The foundations of cost-sensitive learning. In: Proc. of the 17th Int’l Joint Conf. on Artificial Intelligence (IJCAI 2001). San Francisco: Morgan Kaufmann Publishers, 2001. 973-978.
  • 7Zadrozny B, Langford J, Abe N. Cost-Sensitive learning by cost-proportionate example weighting. In: Proc. of the 3rd IEEE Int’l Conf. on Data Mining (ICDM 2003). New York: IEEE, 2003. 435-442. [doi: 10.1109/ICDM.2003.1250950].
  • 8Krawczyk B, Wozniak M. Designing cost-sensitive ensemble-genetic approach. Advances in Intelligent and Soft Computing, 2011, 102:227-234. [doi: 10.1007/978-3-642-23154-4_26].
  • 9Schapire RE, Freund Y. Boosting: Foundations and Algorithms. Cambridge: The MIT Press, 2012.
  • 10Fan W, Stolfo SJ, Zhang J, Chan PR. AdaCost: Misclassification cost-sensitive boosting. In: Proc. of the 16th Int’l Conf. on Machine Learning. San Francisco: Morgan Kaufmann Publishers, 1999. 97-105.

共引文献12

同被引文献25

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部